
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 12, Number 1, 2009, 35–49

The Berkeley Motifs
and an Integral Parallel Architecture

Mihaela MALIŢA

Saint Anselm College, NH.
E-mail: mmalita@anselm.edu

Gheorghe ŞTEFAN

Politehnica University of Bucharest, Romania & BrightScale, Sunnyvale, CA
E-mail: gstefan@arh.pub.ro

Abstract. The Integral Parallel Architecture (IPA) developed by

BrightScale is a low-power & low-area one-chip solution to solve intense com-

putational problems using data-parallel, time-parallel and speculative-parallel

mechanisms. BrightScale technology is presented and analyzed from the point

of view of each of the 13 computational motifs proposed in The Berkeley’s View

[1]. IPA emerges from the Stephen Kleene’s computational model of the partial

recursive functions [3] as the simplest parallel architecture, a good starting point

for a true science of parallel computation. We briefly investigate how such an

elementary parallel architecture performs, for the main computational motifs, in

solving the problems of programmability, portability, flexibility, data movement

between computational cells, and between cells and the main memory.

1. Introduction

While the mono-processor architectures are very well rooted in the Turing’s com-
putational model, multi- and many-processor architectures do not have a similar
foundation in a well grounded theoretical model. Rather, all the solution provided
for parallel computation – shared memory multiprocessors, distributed memory mul-
tiprocessors, vector systems, massively parallel processors, SIMD systems, symmetric
multiprocessors – look like a non-formal extension, obtained by interconnecting more
than one processing units in networks having ad-hoc or too general topologies. We
have a lot of parallel organizations, but we are not yet able to provide a true parallel



36 M. Maliţa, G. Ştefan

architecture which makes transparent to the programmer the actual organization of
the machine – the nightmare of any application developer. In fact, we are waiting for
a true science of parallel computing.

In [8] & [5] is for first time suggested the foundation of parallel computation based
on the Kleene’s [3] computational model. The partial recursive functions model is a
promising starting point in defining an elementary parallel architecture. This ele-
mentary concept was called Integral Parallel Architecture (IPA) and its simplest
associated organization was described.

In this paper, the concept of IPA is revisited in order to be used to describe its
first implementation: the BrightScale’s technology, conceived as an accelerator for
computational intense applications. Then, the technology is evaluated against the 13
computational motifs emphasized in The Berkeley’s View [1].

Because the BrightScale’s technology has a very simple, maybe the simplest,
implementation possible for a parallel machine, the main goal of our approach is to
make preliminary investigations in order to understand how far is this elementary
parallel organization from a machine able to solve efficiently all the 13 computational
motifs considered by the Berkeley’s seminal report.

2. The Simplest Parallel Architecture

In [5] the Kleene’s computational model is proposed as starting point for a true
parallel computing science, and is proved that the partial recursive functions are com-
puted using only various forms of composition (primitive recursive and minimalization
rules are forms of the composition rule). In this theoretical framework IPA is defined
(see [9] [4])as an architecture featured with three kinds of parallel mechanisms:

data-parallel computing : this form uses operators that take vectors as arguments
and returns vectors, scalars (by reduction operations) or streams (input values
for time-parallel computations). This form is very similar to Flynn’s SIMD
machine [2].

time-parallel computing : this form uses operators that take streams as arguments
and return streams, scalars, or vectors which can be used as input values for
data-parallel computations. This form is akin to MIMD machines, but refers to
the computation of a single function (described by a vector of functions) instead
of multi-threading computation.

speculative-parallel computing : in this form, operators take scalars as argu-
ments and return vectors reduced to scalars using selection. This form is used
mainly to speed up time-parallel computations, and it contains a true MISD-like
structure. This form has no real implementations in Flynn’s taxonomy.

In these context an actual structure with IPA is built starting from the general
form of composition:

f(x0, . . . xn−1) = g(h0(x0, . . . xn−1), h1(x0, . . . xn−1), . . . hm−1(x0, . . . xn−1))



The Berkeley Motifs and an Integral Parallel Architecture 37

implemented as an actual system as it is represented in Fig. 1, where a comput-
ing cell hi is used for each function hi(x0, . . . xn−1) and for the reduction function
g(y0, . . . ym−1) specific network g is considered.

h0 h1 hm−1

g

? ? ?

?

? ? ?

x0, x1, . . . xn−1

out = f(x0, x1, . . . xn−1)

Fig. 1. The physical structure associated to the composition rule.
The composition of the function g with the functions h0, . . . , hm−1 implies

a two-level system. The first level, performing in parallel m computations is

serially connected with the second level which performs a reduction function.

From the theoretical model (see Fig. 1) to an actual machine few specific features
must be added. These features must allow the following pairs of limit cases:

1. data-parallel computation vs. time-parallel computation, where:

• data-parallel means hi = h for i = 0, . . . n − 1, the input is a stream of
vectors {Xj} = {x0, . . . xn−1}, and the output is another stream of vectors
{Yj} = {y0, . . . yn−1}

• time-parallel means n = 1 and the computation looks like a pure
pipelined process (f = g(h0)) having the general form of f([X]) =
f0(f1(f2(. . . fp−1([X]) . . .))), where [X] = [x0, . . . xn−1] is the input stream
of scalars, resulting as output another stream [Y ] = [y0, . . . yn−1]

2. strong data-locality vs. non-locality, where:

• strong data-locality means each cell uses only one component of the im-
pute vector, hi = h(xi), and sometimes data from a small neighborhood
(example: hi = h(xi−2, xi−1, xi, xi+1, xi+2))

• non-locality means that each cell will use in one stage of the computation all
components of each input vector or at least data resulting from processing
each component of each vector (example: FFT)



38 M. Maliţa, G. Ştefan

3. locally predicated vs. globally predicated execution, where:

• locally predicated means each cell is featured with a Boolean machine used
to manage a finite stack of predicates used to decide how to execute each
received instruction

• globally predicated means that the entire array of cells is catched in a
global loop which receives a selected predicate from each cell and sends
back to each cell information about the state of the entire array of cells.

Results the elementary parallel organization represented in Fig. 2, where it is
easy to recognize the shape of the theoretical composition circuit (see Fig. 1). But,
some additional structure are necessary to obtain a real machine, thus an EPO will
be composed by:

cell0 cell1 celln−1¾-- ¾-- ¾-- ¾-

data0[w − 1 : 0] datan−1[w − 1 : 0]

bigData 0 bigData p pre
first
post

flags

gLoop

-

¾¾
¾

? ?

reductionNet

? ?
6 6

?
6

ioSystem
control

-

6

bigData[(m× w)− 1 : 0]

6
?

|flags[0 : n− 1]

Instruction

{data[w − 1 : 0],
∑

flags[0 : n− 1]}

?

ARRAY

?
ioF lag

Fig. 2. Elementary parallel organization. Where:
bigData 0 = bigData0[(m× w)− 1 : 0], . . .,

bigData p = bigData(
√

n/m)−1[(m× w)− 1 : 0],

and pre, first, post, flags are n-bit connections.

ARRAY : a linearly connected array of n cells each containing an w-bit ALU, a file
register, a Boolean machine, and a local memory used:

• to store local data, when the cell is used as an execution unit (EU) for
data-parallel computation

• to store local data and the local program, when the cell is used as a pro-
cessing element (PE) for time-parallel computation



The Berkeley Motifs and an Integral Parallel Architecture 39

ioSystem : transfers (m×w)-bit data between the array and the external (memory)
system; for each input vector n/m clock cycle are used (the latency of the system
can be “absorbed” if a big number of vectors are transferred); local buffers can
be used to make in-fly permute on the transferred data

reductionNet : extracts for the use of the control module various data from the
array

gLoop : takes form each cell the selected predicate and returns to each cell four
independent bits: first (the cell is the first with the selected predicate on 1),
pre (the cell is positioned before the first cell), post (the cell is positioned after
the first cell), |flags (at least one cell has the selected predicate on 1); the last
bit is sent also to control

control : sends in each clock cycle an instruction to array, and it is used to config-
ure the module ioSystem; it contains the program memory for data-parallel
processing.

BrightScale’s already implemented in 65nm, using standard-cell library, a version
of the above described structure. In this approach data-parallel section, with n =
1024, is implemented separated from the time-parallel section, with n = 8. The main
parameters are:

computation: 400 GOPS1 at 400 MHz (peak performance)

external bandwidth: 6.4 GB/sec (peak performance)

internal bandwidth: 800 GB/sec (peak performance)

power: < 3 Watt

area: < 50mm2.

3. BrightScale’s Integral Parallel Architecture

While IPA performs data-parallel, time-parallel and speculative parallelism, al-
most all parallel computations are data parallel, and only some of them involve time
parallel processes supported by speculative computations, if needed.

3.1. Data parallel engine

The computational structure performing data parallel computation is a fine-grain
network of small & simple execution units (EU) working as a many-cell machine.

BrightScale many-core section (see Figure 3) is a linear array of 1024 EUs. It pro-
vides the spatial dimension of the array. Each EU is a 16-bit machine, with a 1 KB
local data memory. This memory allows to store in the array 512 1024-component

116-bit Giga Operations Per Second



40 M. Maliţa, G. Ştefan

vectors, generating the temporal dimension of the array. The processing array
works in parallel with an IO plan (IOP) used to transfer data between the array
and the external memory. The array is controlled by the stack machine Instruction
Sequencer (IS), while the IOP transfers data under the control of a similar machine
called IO Controller (IOC). Thus, data processing and data transfer are two indepen-
dent processes performed in parallel. Data exchange between the processing array
and the IO plan is performed in one clock cycle and is synchronized by interrupt
mechanisms defined between the two controllers, IS and IOC.

PROCESSING ARRAY

1024 16-bit EUs

Input-Output Plane

Instruction

Sequencer

128-bit
Input-Output

Controller

6

¾

Fig. 3. BrightScale data parallel engine. The processing array is paralleled

by the IO Plane which performs data transfers transparent to the processing.

For time parallel computation a dynamically reconfigurable network of 8 PEs is
provided.

Speculative computation is performed in both networks.

3.2. Data parallel architecture

The user’s view of the data parallel machine is represented in Figure 4. A linear
cellular machine containing 1024 EUs (the spatial dimension of the architecture),
each storing in its data memory up to 512 scalars (the temporal dimension of the
architecture), performs parallel, constant number of cycle operations on randomly
accessed vectors. Some generic operations are exemplified in the following:

PROCESSING OPERATIONS performed in the processing array under the con-
trol of IS



The Berkeley Motifs and an Integral Parallel Architecture 41

full vector operation: {carry, v5} = v4 + v3;
the corresponding integer components of the two operand vectors (v4 and
v3) are added, and the result is stored in the result vector v5 and in the
Boolean vector carry

s7

s1
s0

v511
v510

vi

v0
v1
v2

0 1 j 1023

vi[j]

sk sk[j]

Fig. 4. The internal state of BrightScale data parallel machine.
There are 512 integer vectors, each having 1024 16-integer components
(vi[j] is a 16-bit integer), and 8 selection vectors, each having 1024

Booleans (sk[j] is a Boolean).

Boolean operation: s3 = s3 & s5;
the corresponding Boolean components of the two operand vectors are
ANDed and the result is stored in the result vector

predicated execution: v1 = s2 ? v3 - v2 : v1;
in any positions where s2 = 1 the corresponding components are oper-
ated, while in the rest (i.e., elsewhere) the content of the result vector
remains unchanged (it is a “spatial” if)

vector rotate: v7 = v7 >> n;
the content of vector v7 is rotated n positions right, i.e.,
v7[i] = v7[(i+n)mod1024]

INPUT-OUTPUT OPERATIONS performed in IOP under the control of IOC



42 M. Maliţa, G. Ştefan

strided load: load v5 address burst stride;
the content of v5 is loaded with data from the external memory accessed
starting from the address address, using bursts of size burst, stridden
with stride

scattered load: sload v3 high address (v9 address stride);
the content of v3 is loaded with data from the external memory indirectly
accessed using the content of the address vector v9, whose content is
used starting from the index address, strided with stride; the address
vector is structured in pairs of 16-bit words; each of the 512 resulting 32-bit
word is organized as follows:
{dummy, burst[5:0], address[24:0]}
where: if dummy == 1, then a burst of {burst[5:0], 1’b0} dummy
bytes are loaded, else a burst of data from the address {high address,
address, 1’b0} is loaded (indirect load)

strided store: store v7 address burst stride;

gathered store: gstore v4 high address (v3 address stride);
(it is a sort of indirect store).

3.3. VectorC: the programming language for data parallel architecture

BrightScale’s data parallel engine is programmed in VectorC, a C language
extension for parallel processing defined by BrightScale [6]. The extension is made
by adding new primitive data types and by extending the existing operators to accept
the new data types. In the VectorC programming language the conditional statements
have become predication statements. The new data primitives are:

int vector: vector of integers (stored as a pair of 16-bit integer vectors)

short vector: vector of shorts (stored as a 16-bit integer vector)

byte vector: vector of bytes (two byte vectors are stored as a 16-bit integer vector)

selection: vector of Booleans

In order to explain how VectorC works let be the following variable declarations:

int i1, i2, i3;
bool b1, b2, b3;
int vector v1, v2, v3;
selection s1, s2, s3;

Then a VectorC statement like: v3 = v1 + v2; stands for:

for (int i = 0; i < VECTOR_SIZE; i++)
v3[i] = v1[i] + v2[i];



The Berkeley Motifs and an Integral Parallel Architecture 43

and s3 = s1 && s2; stands for:

for (int i = 0; i < VECTOR_SIZE; i++)
s3[i] = s1[i] && s2[i];

The scalar statement: if (b1) i3 = i1 + i2; becomes in VectorC the following
vector predication statement:

WHERE (s1) {v3 = v1 + v2};

with the meaning:

for (int i = 0; i < VECTOR_SIZE; i++)
if (s1[i])

v3[i] = v1[i] + v2[i];

Similarly, i3 = (b1)? i1 : i2; is extended to accept vectors:

v3 = (s1)? v1 : v2;

Here is an example in VectorC computing the absolute difference of two vectors.

vector absdiff(vector V1, vector V2);
int main() {

vector V1 = 2;
vector V2 = 3;
vector V;
V = absdiff(V1, V2);
return 0;

}
vector absdiff(vector V1, vector V2) {

vector V;
V = V1 - V2;
WHERE (V < 0) {

V = -V;
}
ENDW
return V;

}

3.3. Time parallel architecture

Time parallel computation is supported in BrightScale’s technology by a small
configurable network or processing elements called Stream Accelerator (SA). The
network works like a pipe of processors in which in any point two or more machines are
parallel connected to support speculation (see Figure 5). In the actual implementation
8 machines are used. Functions like CABAC decoding procedure, a highly sequential
and strong data dependency computation, are efficiently executed.



44 M. Maliţa, G. Ştefan

-σout
PEi−1

b.

PEi+q

PEi

PEi+1

a.

PEi+q−1

PEm−1-

-

- -

-

-

σin

σi

σi+1

σi+q−1

σin σ0

σ0

PE0

PE0 - -

PE1

σi+q

- - -σ1
PEm−1

σm−1 = σout

-

- -σ1

σi−1

Fig. 5. BrightScale time-parallel engine. a. The pipe without speculation.
b. The pipe with speculation. The i-th stage in pipe is computed by q PEs

dynamically configured in a speculative linear array. PEi+q selects dynamically

as input only one of the outputs of the speculative array.

The computation of SA is defined by two mechanisms:

stream of functions containing m programs pj(σ):

S(σin) = < p0(σin), p1(σ0), . . . pm−1(σm−2) >= σout

applied to a stream of scalars σin, generating a stream of scalars σout as output,
where: pj(σ) is a program which processes the stream σ and generates the
stream σj ; it is a sort of MIMD computation

vector of functions containing q programs pj(σ):

V (σin) = [p0(σin), . . . pq−1(σin)]

applied to a stream of scalars σin, generating a stream of q-component vectors;
it is a true MISD computation.

The latency introduced by a stream of functions is m, but the stream is computed
in real time. Vector of functions are used to perform speculation when the compu-
tation requests it in order to preserve the possibility of real time computation. For



The Berkeley Motifs and an Integral Parallel Architecture 45

example:

< p0(σin), p1(σ0), . . . pi−1(σi−2), V (σi−1), pi+q(σ?), . . . pm−1(σm−2) >

is a computation which performs a speculation in the stage i of the pipe. The program
pi+q(σ?) selects from the vectors generated by V (σi−1) only one component as input.

4. Berkeley’s View & BrightScale’s Performance

Berkeley’s View [1] provides a comprehensive presentation of the problems to
be solved by the emerging actor on the computing market: the ubiquitous parallel
paradigm. Many decades an academic topic, parallelism becomes an important actor
on the market after 2001 when the clock rate race stopped. This research report
presents 13 computational motifs2 which cover the main aspects of the parallel com-
puting. They are defined unrelated with a specific parallel architecture. In the next
section we will make a preliminary evaluation of them in the context of BrightScale’s
IPA.

BrightScale’s cellular network has the simplest possible interconnection network.
This is both an advantage and a limitation. On one hand, the area of the system is
minimized, and it is ease to hide the associated architecture to the user, with no lose in
programmability and in the efficiency of compilation. The limitation acts depending
on the application domain. Follows short comments about how the BrightScale
architecture works for each of the 13 Berkeley’s View motifs.

4.1. Motif 1: Dense linear algebra

The computation in this domain operates mainly on n×m matrixes. The opera-
tions performed are: matrixes addition, scalar multiplication, transpose of a matrix,
dot product of vectors, matrixes multiplication, determinant of a matrix, (forward
& backward) Gaussian elimination, solving systems of linear equations, inverse of a
n× n matrix.

Depending on the product n × m the internal representation of the matrixes is
decided. If the product is small enough (usually, no bigger than 128), each matrix can
be associated to one EU, resulting 1024 matrixes represented by n×m 1024-element
vectors. But, if the product n×m is big, then p EUs are associated with each matrix,
resulting 1024/p matrixes represented on (n×m)/p 1024-element vectors.

For all the operations above listed the computation is usually accelerated 1024
times, and no time it is under (1024/p) times. This is possible because special hard-
ware is provided for reduction operations (for example: adding 1024 16-bit numbers
takes 20 clock cycles).

4.2. Motif 2: Sparse linear algebra

There are two types of sparse matrixes: (1) randomly distributed sparse arrays
(represented by few types of lists), (2) band arrays (represented by a list of vectors).

2Initially called dwarfs, they are renamed as motifs in [7].



46 M. Maliţa, G. Ştefan

For small random sparse arrays, converting them internally into dense array is
a good solution. For big random sparse arrays the associated list is operated using
efficient search operations. For band arrays systolic-like solution are proposed.

4.3. Motif 3: Spectral methods

The typical examples are: FFT or wavelet computation. Because of the “butterfly”
data movement FFT computation is implemented depending on the length of the
sample. The spatial and the temporal dimensions of the processing array helps in
adapting the data representation in order to achieve an almost linear acceleration.
For example: 32 1024-sample FFTs can be processed in parallel, because the initial
real samples are stored in 32 vectors, so as for each FFT 32 EUs are allocated. Each
set of 1024 samples represents a 32×32 array in the internal state of the BrightScale
architecture (see Figure 4).

4.4. Motif 4: N-Body method

This method fits perfect on BrightScale architecture, because for j = 0 to j =
n− 1 must be computed:

U(xj) =
n−1∑

i=0

F (xj , Xi).

Each function F (xj , Xi) is computed by another EU, and then the sum is a reduction
operation linearly accelerated by the array. Depending on the value of n, the data
is distributed in the processing array using the spatial dimension only, or both, the
spatial and the temporal dimension.

4.5. Motif 5: Structured grids

The grid is distributed on the two dimensions of our array: the spatial dimension
and the temporal dimension. Each processor is assigned a line of nodes (on the spatial
dimension). It performs each update step locally and independently of other line of
nodes. Each node only has to communicate with neighboring nodes on the grid,
exchanging data at the end of each step. The system works as a cellular automata.
The computation is accelerated almost linearly.

4.6. Motif 6: Unstructured grids

Unstructured grids problems are described as updates on an irregular grid, where
each grid element is updated from its neighbor grid elements. Parallel computation is
disturbed when problem size is large, and the non-uniformity of the data distribution
ask for special access mechanisms. In order to solve the non-uniformity problem a
preprocessing step is required.

The algorithm for preprocessing the n-element unstructured grid representation
starts from an initial list of grid elements G = {g0, . . . gn−1} and provide the minimum
number of vectors, following the steps sketched here:



The Berkeley Motifs and an Integral Parallel Architecture 47

1. the n× n interconnection matrix for n grid elements is generated

2. interchanging elements in the list G a minimal band matrix is generated

3. each diagonal of the band represents a vector loaded into the processing array

4. results a grid with some dummy elements, but each actual grid element has its
neighborhood located in few adjacent PEs.

4.7. Motif 7: Map reduce

The typical example map reduce computation is the Monte Carlo method. This
method consists in many completely independent computations working on randomly
generated data. This type of computation is highly parallel. Sometimes it requests the
add reduction function, for which BrightScale architecture has special accelerating
hardware.

4.8. Motif 8: Combinational logic

There are a lot of very different problems falling in this class. We list here only
the most important and the most frequently used ones:

1. blocks processing, exemplified by AES encryption algorithms; it works in 4× 4
arrays of bytes, each array is loaded in one EU, and the processing is completely
SIMD-like with linear acceleration

2. stream processing, exemplified by convolutional methods which do not use
blocks, processing instead a continuous bitstream; it is computed very efficient
in the time parallel accelerator (SA) with no speculation involved

3. image rotation for black & white or color bit mapped images; it is performed
(1) loading m×m array of pixels into the processing array on both dimensions
(spatial and temporal), (2) executing a local transformation, and (3) restoring
the transformed image in the appropriate place

4. route lookup, used in networking; it supposes three data-base like operations:
longest match, insert, delete, all performed very efficiently by the BrightScale
processing array.

4.9. Motif 9: Graph traversal

The array of 1024 machines can be used as a big “speculative device”. Each EU
starts with a full graph stored in its data memory, and the computation provides
the result when one EU, if any, finds the solution. Limitations are generated by the
dimension of the data memory of each EU. More investigation is needed to evaluate
the actual power of BrightScale technology in solving this problem.



48 M. Maliţa, G. Ştefan

Some problems related with graphs are easy solved if matrix computation is in-
volved (example: computing the distance between all the elements of a graph).

4.10. Motif 10: Dynamic programming

Viterbi decoding is the example presented in [1]. It requests the modular feed-
forward architecture of SA, built as a distinct network (like in the actual implemen-
tation) or integrated into the main data parallel processing array. Very long stream
of bits are parallel computed on line by the pipeline structure of SA.

4.11. Motif 11: Back-track and branch & bound

Motif under investigation (even “Berkeley’s View” is silent regarding this motif).

4.12. Motif 12: Graphical models

Motif under investigation (even “Berkeley’s View” is silent regarding this motif).

4.13. Motif 13: Finite state machine

The authors of “Berkeley’s View” claim that for this motif “nothing helps”. But,
we consider that a pipe of machines featured with speculative resources [5] helps a lot.
In fact, SA solves the problem if its speculative resources are activated. BrightScale
technology offers SA as the first implementation of a machine able to deal with this
rebellious motif.

5. Concluding Remarks

1. BrightScale technology covers almost all motifs. Excepting the motifs 11
and 12 (work on them in progress), possibly 9, the BrightScale technology performs
very well. Therefore, we can claim that the elementary parallel architecture and the
associated organization, based on Kleene’s model, is a promising start for a true
parallel computing science.

2. The linear network is not a limitation. Because the intense computational
problems are characterized by an advanced locality, the simplest interconnection net-
work is not a major limitation. The temporal dimension of the architecture helps
many times to avoid the limitations imposed by the two simple interconnection net-
works.

3. The spatial & temporal dimension are doing a good job together. The
user’s view of the machine is a two-dimension array. Actually one dimension is in
space (the 1024 EUs), and the other dimension is in time (the 512 16-bit words stored



The Berkeley Motifs and an Integral Parallel Architecture 49

in each local memory). These two distinct dimensions allow to optimize area, while
the locality and the degree of parallelism are both kept at high values.

4. Time parallelism is rare, but unavoidable. Almost anytime in a real com-
plex application all kinds of parallelism are involved. Some pure sequential processes
represent sometimes uncomfortable corner cases solved only by the time parallel re-
sources provided in BrightScale architecture (see the 13th motif).

5. BrightScale’s organization is transparent. Because the interconnection net-
work is simple the internal organization of the machine is easy to be made transparent
to the user. The elegant solution offered by the VectorC language is a good proof of
the high organizational transparency of the BrightScale technology.

References

[1] ASANOVIC K. et al., The Landscape of Parallel Computing Research: A View
from Berkeley, Technical Report No. UCB/EECS-2006-183, December 18, 2006.
(click here to find the report: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-183.pdf

[2] FLYNN M. J., Some computer organization and their affectiveness, IEEE Trans. Comp.
C21:9 (Sept. 1972), pp. 948–960.

[3] KLEENE S., General Recursive Functions of Natural Numbers, in Math. Ann., 1936.

[4] MALIŢA M., ŞTEFAN G., THIEBAUT D., Not Multi-, but Many-Core: Designing
Integral Parallel Architectures for Embedded Computation, in ACM SIGARCH Computer
Architecture News, Volume 35 , Issue 5, Dec. 2007, Special issue: ALPS ’07 - Advanced
low power systems; communication at International Workshop on Advanced Low Power
Systems held in conjunction with 21st International Conference on Supercomputing June
17, 2007 Seattle, WA, USA.

[5] MALIŢA M., ŞTEFAN G., On the Many-Processor Paradigm, in H. R. Arabina (Ed.),
Proceedings of the 2008 World Congress in Computer Science, Computer Engineering
and Applied Computing, vol. PDPTA’08 (The 2008 International Conference on Parallel
and Distributed Processing Techniques and Applications), 2008.

[6] MÎŢU B., C Language Extension for Parallel Processing, research report, BrightScale,
2008. (click here to find it: http://arh.pub.ro/gstefan/Vector%20C.ppt)

[7] PATTERSON D. A., The Parallel Computing Landscape: A Berkeley View 2.0, keynote
lecture at The 2008 World Congress in Computer Science, Computer Engineering and
Applied Computing, Las Vegas, July, 2008.

[8] ŞTEFAN G., Integral Parallel Computation, in Proceedings of the Romanian Academy,
Series A: Mathematics, Physics, Technical Sciences, Information Science, vol. 7, no. 3,
Sept.-Dec. 2006, pp. 233–240.

[9] ŞTEFAN G., The CA1024: SoC with Integral Parallel Architecture for HDTV Process-
ing, invited paper at 4th International System-on-Chip (SoC) Conference & Exhibit,
November 1 & 2, 2006, Radisson Hotel Newport Beach, CA.


