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Abstract. The k-means training algorithm used for the RBF (Radial Basis
Function) neural network can have some weakness like empty clusters, the choice
of the cluster number and the random choice of the centers of theses clusters.
In this paper, we use the Fuzzy Min Max technique to boost the performances
of the training algorithm. This technique is used to determine the number of
the k centers and to initialize correctly these k centers. The k-means algorithm
always converges to the same result for all the tests.
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1. Introduction

Artificial Neural Networks (ANNs) have emerged as well-known solutions for tack-
ling pattern recognition and classification tasks. In industrial fault detection and clas-
sification applications, extensive studies using ANNs to detect faults and to identify
the associated causes have been conducted [1], [2], [3]. ANNs have been also utilized
in decision-making processes to identify the type of the decision problem with the
view of choosing the adequate model for analysis and solving [4, 5]. To consider the
temporal aspect of the input data, ANNs require some modifications of the static
neural models [6]. Two different approaches of the time representation in the neural
network architectures can be identified [7]. In the first case, the time is represented
as an external mechanism. Elman [8] names this technique “spatial representation
of time”. In the second case, the neural network is able to treat the time dimension
without any external mechanism. The Recurrent Neural Networks (RNN)are fun-
damentally different from feed-forward architectures in the sense that they not only
operate on an input space but also on an internal state space — a trace of what already
has been processed by the network. This is equivalent to an Iterated Function System
(IF'S; see [9] for a general introduction to IFSs; [10] for a neural network perspective)
or a Dynamical System (DS; see e.g. [11, 12] for a general introduction to dynamical
systems; ([13]; [14]) for neural network perspectives).

In some particular situations, fault prediction applications can be viewed as time
series prediction processes. A significant amount of work has been done in the realm of
time series analysis, modeling, and prediction to support analysis and interpretation
of such data [15]. The commonly encountered models of time series include auto-
regressive models [16], recurrent neural networks [17], [18], [19], [20] and fuzzy rule-
based models [17], [21], [22], [23].

The Recurrent Radial Basis Functions (RRBF') networks were introduced in [24],[2].
The dynamic aspect is obtained by the use of an additional self-connection on the
input neurons with a sigmoid activation function. The RRBF network can thus take
into account a certain past of the input signal (Fig. 1). The network parameters are
determined with a two stage training process. During the first stage, an unsupervised
k-means learning algorithm is used to determine the parameters of the RBF nodes
(the centers and the influence rays of the Gaussian nodes). In the second stage, linear
regression is used to determine the weights between the hidden and the output layer.

In the case of linear output nodes, the network output is expressed as follows [25]:

M

e = D wrsbs([x — yl]) + wio, (1)

Jj=1

where x is the input vector with elements x; (where 4 is the dimension of the input
vector); u; is the vector determining the centre of the basis function ¢; with elements
uji; Wk, are the final layer weights and wgo is the bias. The basis function ¢;(.)
provides the non-linearity. Each neuron of the input layer gives a summation at the
instant t between its input z; and its previous output weighted by a self-connection



Boosting the Performances of the Recurrent Neural Network 71

w;;: The output of its activation function is:
ai(t) = wi&(t—1) 4+ (1),
(2)
&Gi(t) = flai(t),

where a;(t) and ;(t) represent respectively the neuron activation and its output at
the instant t, f is the sigmoid activation function:

1 —exp(—kzx)
1+ exp(—kax)

[ (@) (3)

Fig. 1. Recurrent Radial Basis Functions networks.

By making some tests with the classic version of the k-means algorithm, we note
that they have three weaknesses as it follows:

1. There might be some situations where a points’ cluster can be empty. This
generates a problem to calculate the prototype influence ray (division by zero).

2. The choice of the number k of prototype that the network has to memorize
(number of the Gaussian nodes) is the second weakness of the k-means algo-
rithm. This problem of the network complexity is presented by the Fig. 2. We
can see on this figure the influence of the parameter k in the prediction perfor-
mances of the RRBF network. The complexity graph of the ANN is divided
into three zones: a) an under training situation (zonel), b)a good generalization
situation (zone 2), and c¢) an overtraining situation (zone 3). The second zone
(zone 2 of good training) represents the good choice of the number k. in the
literature, there is no formal technique describing the way to have this good
training situation [1].

3. The random initial choice of the k center from all the input data is the third
weakness. This might cause the instability of the results. Consequently we have
to run the algorithm several times to obtain a good result. As showed in Fig. 3,
we have different results at each execution cycle.
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Fig. 2. Influence of the k parameter
in the prediction performances of the RRBF.
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Fig. 3. Instability of the k-means technique.

In this paper we present a method meant to compensate the three weaknesses
previously enumerated. We use the Fuzzy Min-Maz technique [26], [27] to find the
numbers of the k-center, and to initialize them. The organization of the remaining
part of this paper is as it follows. Section 2 gives a review of the Fuzzy Min-Max
technique and indicates how we use it to improve the performances of the k-means
algorithm. The experimental studies and the results obtained are explained and
discussed in section 3. Conclusion and suggestions for further work are presented in
section 4.
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2. The Fuzzy Min-Max algorithm

The instability problem of the k-means technique can be solved by the Fuzzy Min-
Maz (FMM) technique [26], [27]. This technique allows determining and initializing
the k-centers in an iterative way. Thus the k-means technique can be boosted to con-
verge into a good and stable result. The FMM technique is based on the use of hyper-
cubes with fuzzy sets. A hyper-cube defines a region of the n-dimensional pattern
space that has patterns with full class membership. The hyper-cube is completely
defined by its minimum and maximum points, and its corresponding membership
functions are used to create fuzzy subsets in the n-dimensional pattern space. FMM
is an incremental learning system. It learns incrementally in a single pass through
the data. It refines the existing pattern classes as new information is received. It also
has the ability to add new pattern classes online. During this initialization phase,
n—dimensional hyper-cubes are created. The hyper-cubes are limited by the max-
imal and minimal coordinates of each hyper-cube points. A membership function
is defined with respect to the minimum and maximum points of a hyper-cube. It
describes the degree to which a pattern fits into the hyper-cube. The membership
function of a point for each hyper-cube is defined as following;:

1 n
Hj(z,v5,u) = — ) [ = fl@i —wji) = floi — i), (4)
i=1
where the function f is defined as:
1, x>
fle)y=4 z/n, 0<z<n (5)
0, z <0

and H; is the membership degree of the point x to the hyper-cube j. This membership
degree belongs to [0,1]; z; is the i*" dimension of the input vector x; uj;, vj; is the
maximal and minimal value of the i*” dimension for the j** hyper-cube.

The n parameter is called the sensitivity of each hyper-cube. The numerical value
is the same for all the hyper-cubes. This parameter determines the decreasing of the
membership degree H; (equation (4)) of a point according to its distance from the j"
hyper-cube. For small values of 1, we obtain a steeply membership degree (we lose the
fuzzy aspect). In this case, there is no overlapping between hyper-cubes. Conversely,
for great value of 1, we obtain a very fuzzy membership degree H;. The overlapping
between hyper-cubes is very high in this case. The authors of the algorithm do not
give a formal way to determine the sensitivity parameter n. The only criterion is
to minimize the overlapping between hyper-cubes (small values of 7). To observe
this criterion with a certain fuzzy aspect of the membership degree, we propose the
following expression to calculate the value of the parameter 7:

- max(agi) — min (1)
7 = min

% QX(N—].) ’

(6)



74 R. Zemouri et al.

where x;; is the it" dimension of the input vector x; of the cluster x; N is the number
of the input points of all the data set x.

Figure 4 shows an example of the calculation of the sensitivity parameter 7 for a
two-dimensional problem with an input set x containing two points {x1,X2}:

T11 — 21 Ti1 — T21

_ _ T12 — T22 12 — T22
2x (2—1) 2 '

and =G T 2

Uit

n=min(1,1m,) =1,

Fig. 4. Calculation of the sensitivity parameter 7.

The Fuzzy Min-Max algorithm has three phases: a) the expansion of hyper-cubes,
b) the overlap test and ¢) the contraction of the hyper-cubes. For the initialization
phase of the k centers, we have used only the expansion phase to form the initial
clusters. The steps used for the initialization of the k centers of the k-means algorithm
are:

1. The initialization of the maximum and minimum points of the first hyper-cube
with the first presented point.

2. The calculation of the membership degree of each input point by the Eq. (4).

3. The expansion of the hyper-cube having the highest membership degree is done
according to Eq. (4):

Z (max(uji, .TZ) - min(’l)ji7 xz)) < n#, (7)

i=1

where 6 represents a parameter of the algorithm which controls the creation
of new hyper-cubes. A small # means more hyper-cubes will be created, and
conversely, big # means less hyper-cubes will be created. A great number of
hyper-cubes means that the hyper-cubes can contain only a smaller number
of patterns, which will increase the network complexity. A small number of
hyper-cubes means that they can contain a larger number of patterns, and will
decrease the network complexity. If a hyper-cube is expanded, the old minimum
and maximum points of the hyper-cube will be replaced by the new minimal
and maximal values.
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4. If no hyper-cube is expanded, a new hyper-cube containing the new input data
will be generated (condition of the equation (7) is not respected).

Once the entire training data are presented, k hyper-cubes are then created ac-
cording to the parameter 6. The k centers are so initialized by this iterative method.

Figure 5 shows comparative results between the random initialization (classic k-
means initialization) and the Fuzzy Min-Max initialization. This figure shows the
input data set and the k-center obtained with the two methods. By the Fuzzy Min-
Max technique, we have a certain uniformity of the k& centers according to the cluster
density. This Fuzzy Min-Max initialization is more stable than the classic initializa-
tion of the k-means technique. We have always the same result at each algorithm
execution. But with the classic k-means technique, the k-centers are randomly ini-
tialized, so the final result is different at each algorithm execution.

04}

Fuzzy Min-Max
Initialization

Fig. 5. Comparative results between a random initialization
(classic k-means initialization) and the Fuzzy Min-Max initialization.



76 R. Zemouri et al.

We propose the boosted k-means algorithm version:

1. Initialization of the Fuzzy Min-Max parameter 0,
2. Creation of the k hyper-cubes with one iteration of the Fuzzy Min-Max algorithm,
3. Initialization of the k-center pw; with the mean of each hyper-cube,
4. Do until no change:
4.1. Do until no change:

4.1.1. Classify the training data x € x to the nearest center

Hi,

4.1.2. Calculate the new means of each cluster

{"’Lh W2, ..., Hk} .
4.2. Eliminate the empty cluster

In Fig. 6 we study the influence of the variation of the parameter  on the number
k of the created centers. This figure shows these results obtained on the temporal
Macky-Glass series prediction [6]. We can see that whatever 6 variation, the number
of created prototypes is situated in a zone bounded by both superior and lower borders
(Fig. 6b). This zone is well situated in the good generalization zone. The k-means
algorithm is then boosted to converge into this zone of good generalization. Thus it
avoids the under training and overtraining zone. This version is less sensitive to the
parameter setting delicate phase.

Number of created prototypes (k centers)
100 : ‘ .

1] 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 6a
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Fig. 6b
Fig. 6. The influence of parameter 0 variation: a) number of created prototypes according
to the variation of the parameter; b) the convergence zone limits of the boosted k-means
algorithm.

3. Experimental Test of the Algorithm

In this section we present the results obtained on a prediction benchmark applica-
tion: the Box & Jenkins gas furnace benchmark [29]. We have to predict the output
concentration of COy y(t + 1) of gas furnace from the concentration y(t) and the
input gas u(t)(see Fig. 7).

u(®) y(®)
l: Gas furnace I::> y(t)

Input gas Output cuncentratmn nf

A,

Fig. 7. Prediction of the output concentration of a gas furnace.
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The training data base contains 300 values of y(t) and u(t). We have used the 100
first values for the training phase and the last 200 values for the test phase (Fig. 8).

y(1 82 T . . : ,
60|
58
56
54
52
50

48

46
Training set Test set
44 P L L L
0 50 100 150 200 250 300
t
a)
u(t) 3 T . .

2 J B
Training set p Test set
3 ! 1 L L
0 50 100 150 200 250 300
t
b)

Fig. 8. The training data base: a) output gas
furnace CO2 concentration; b) input gas.

Figure 9 presents the relation between the parameter 8 and the complexity of
the neural network (number of the k-centers). As we see in Fig. 9a, if the value
of the parameter 0 is around 1, the number of the created prototypes is situated
in a zone of a good generalization (bounded by both superior and lower borders).
These values of the parameter 8 force the RRBF network to converge into the good
generalization zone. We then avoid both under training and overtraining zones. The
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FMM initialization guarantees to k-means algorithm a good choice of the number k
of the prototype. These k centers are also goodly initialized by the hyper-cubes of
the FMM technique.

Number of clusters (k centers)
25 T T T T

Threshold &

Mean Prediction Error (relative %)
10 ;

= Error on training set
= Err0r On test set

0 10 20 30 40 50 60 70 80 90 100
Number of £ centers (prototypes)
b)
Fig. 9. The influence of parameter 6 on a) the number of created prototypes
and b) the corresponding prediction error in both training and test data set.
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Figure 10 presents the prediction results obtained by the RRBF network. Figure
10a shows a 5 steps prediction (prediction at t+5) and Fig. 10b shows a 50 steps
prediction (prediction at t+50). Figure 11 presents the relative prediction error ob-
tained by the classic version of the k-means for £ = 19 (random initialization of the
k-center) and the FMM technique. For the classic version of the k-means, we have
run the algorithm 100 times, and we obtained different result each time. With the
FMM initialization, we always obtained the same result. In Fig. 11 we can see that
the mean prediction error with the FMM technique is close to one of the best results
obtained by the random initialization.

= Predicted output
62 . —_
= Real output

50 100 150 200 250 300

65

= Predicted output
—— Real output

50 =

45 L L L L
100 150 200 250 300

b)
Fig. 10. The prediction results obtained by the RRBF network
with a local output feedback memory.
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Fig. 11. Stability of the boosted k-means algorithm.

4. Experimental Validation of the Algorithm

L
Q0 100

Number of k-means tests

81

For the two benchmarks described in this section, we have compared two ways of
predicting the output system Z(¢ + 1). In the first one we do not use any prediction
error. We have used the RRBF as presented in Fig. 12a. For the second one (Fig. 12b)
we have calculated the prediction error () between the output system x(t) and the
neural network predicted output #'(¢). A proportional-integral-derivative controller
(PID controller) attempts to correct this error and then outputs a corrective action
that can adjust the final Neural Network prediction output (¢ 4+ 1). In this section,
this prediction structure is called RRBF gyr0-. The output of the RRBF g0 is then

described by these equations:

t

2t4+1)=2"(t+1)+ Kpe(t) + K; /5(7)37 + Ky Oc(t)

ot

Ft+1) = (wrdi(lx — ).

Jj=1

)
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P K,e() x(+1)
’_> RRBFEVVDV

i K,jg(r)é“r.

S >
D K, oe(t)
ot X'(t+1)
T
>
& ([ ) )’(‘: J (f)
+ ¢ ¢2 P
x(t)
W Wy
71
PO G
System
b)

Fig. 12. The RRBF and RRBFg;ror structure for time series prediction.

The goal of the first time series (the Mackey—Glass differential equation [28]) is
to predict the value of time series at some point in the future x(t + n) by using
past values. The second benchmark is the Box—Jenkins furnace data describes in the
previous section. For the two benchmarks, we have tested 10 prediction horizons (n
varying from 1 to 10), and the training data set for the two benchmarks contains 50
points. The two neural structures were trained by the k-means algorithm that was
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boosted by the Fuzzy Min-Max as described in the previous sections. In all cases,
the error measure used for evaluation is the mean square error (MSE) since it is the
most commonly used measure found in literature. All data have been normalized by
range [-1,+1]. Results in Table 1 and Table 2 show the best overall MSEs obtained
respectively for both Box—Jenkins and the Makey-Glass with the two ANNs (RRBF
and RRBFg,..o-) and for different horizons of prediction (t+n). Figures 13 and 14
show the MSE for these different horizons of prediction for the two benchmarks. We
can see that for all the tests, the integrator parameter K; which gives the best result
is equal to zero (K;=0). This is due to the summation done by the integrator that
gives an increasing prediction error at each step. Figures 15 and 16 present the MSE
for different number of the k centers of the Gaussian nodes. We can see that the
RRBF g0 is more stable than the RRBFn. The MSE of the RRBF model can
highly vary with the variation of the number of the k center.

The training algorithm presented in this paper always gives a good initialization
of the k-means algorithm. So, we don’t have to initialize randomly the k-means
algorithm. Figures 17 and 18 show some of the prediction results obtained with the
best model for each ANN and for each prediction horizon (as presented in Table 1
and in Table 2). From all these results, it is obvious that the prediction performances
of the RRBF are highly improved with the proportional-derivative controller (PD
controller). For the two benchmark tests, the prediction results obtained with the
RRBFEor are better than those obtained with the RRBF network.

Table 1. Box and Jenkins results

Horizon Neural No. K, Ki Kg MSE testset

of Network nodes

prediction

(t+n)

+1 RRBF 16 - - - 9.2346585e-003
RRBFeqo 10 08 0 035 2.4931081e-003

+2 RRBF 12 - - - 2.0891934e-002
RRBFg. 9 05 0 1 1.3293116e-002

+3 RRBF 15 - - - 2.1827862e-002
RRBFError 31 07 0 05 1.8546084e-002

+d RRBF 27 - - - 1.9543758e-002
RRBFguo 16 02 0 02 2.1365814e-002

+5 RRBF 5 - - - 2.5234884e-002
RRBFg,,, 6 08 0 09 2.1704984e-002

e RRBF 4 - - - 4.2036604e-002
RRBF:. 7 04 0 0.1 3.7381127e-002

“7 RRBF 7 - - - 7.7557329e-002
RRBFryee 6 05 0 0 7.5398560e-002

+5 RRBF 7 - - - 1.2138848e-001
RRBFg,, 4 03 0 0 1.1880591e-001

Ho RRBF 7 - - 1.7708602e—-001
RRBFg,, 8 05 0 0 1.5360799e-001

410 RRBF 7 - - 2.1988363e-001
RRBFg,. 5 06 0 0 1.7519635e-001
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Table 2. Makey-Glass results

Horizon Neural No. K, Ki K; MSE testset

of Network nodes
prediction
(ttn)
- RRBF 4 - - - 1.1234558e-002
RRBFz,.o 7 1 0 09 4.2470656e-005
2 RRBF 4 - - - 3.1526859%9e-002
RRBFgio 7 1 0 09 1.6468035e-003
" RRBF 2 - - - 4.6262829e-002
RRBFErmor 6 1 0 09 8.1336288e-003
- RRBF 2 - - - 6.4874782e-002
RRBFgor 2 0.7 0 09 2.1463932e-002
5 RRBF 9 - - - §.5773478e-002
RRBFg o 2 06 0 09 3.9283539e-002
6 RRBF 2 - - - 1.0730872e-001
RRBFg 2 05 0 1 5.8869717e-002
7 RRBF 2 - - - 1.2790076e-001
RRBFr o 2 05 0 1 8.2871004e-002
8 RRBF 2 - - - 1.4617843e-001
RRBFz0r 2 03 0 1 1.0340636e-001
0 RRBF 2 - - - 1.6111025e-001
RRBFgor 2 03 @ a 1.2357237e-001
“i0 RRBF 2 - - - 1.7209771e-001
RRBF5 o 2 0 D 1.3818208e-001

MSE

Horizon of prediction

Fig. 13. Box and Jenkins results.



Boosting the Performances of the Recurrent Neural Network 85

MSE

Horizon of prediction

Fig. 14. Makey-Glass results.
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Fig. 15. Box and Jenkins results for (t+1).
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Fig. 16. Makey-Glass results results for (t+1).
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Fig. 18. Makey-Glass results for different horizon predictions.

5. Conclusion

In this paper we have presented an improved version of the k-means algorithm to
have good prediction performances of the Recurrent RBF network. We have used the
Fuzzy Min-Max technique to initialize the k centers. The k-centers are not obtained
by a random way but by an iterative technique. We notice that the FMM initialization
guarantees to the k-means algorithm the convergence to one of the best prediction
results. We have then resolved the random initialization of the k-means algorithm.

Although the results obtained from the experiments are encouraging, more inves-
tigations with data set from different problem domains are needed to further ascertain
the effectiveness of the proposed training algorithm. We have to compare the per-
formances of the proposed algorithm with other techniques like the modified FMM
network presented in [3].Also new applications in various fields such fault detection
and diagnosis and problem recognition and model building in decision- making [5] are
envisaged.

Note. A preliminary version of this paper was presented at the 2nd Mediterranean
Conference on Intelligent Systems and Automation (CISA’09 [30]).
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