
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 19, Number 4, 2016, 369–384

Locally Evolving Splicing Systems

Kalpana Mahalingam, Prithwineel Paul

Department of Mathematics,
Indian Institute of Technology, Madras, Chennai-36, India

Email: kmahalingam@iitm.ac.in, prithwineelpaul@gmail.com

Abstract. An extended H system with locally evolving rules is a model of
splicing computation with a special feature that the splicing rules evolve at each
step. It was originally proved by Paun et al. that all RE languages can be generated
by such systems with a finite set of rules of radius at most 4 and with contexts of
length at most 7 for the insertion-deletion rules by which the splicing rules evolve.
We improve this result by reducing the length of the contexts to at most 2 and we
also show that such systems with radius at most 2 and contexts of length at most 3
can generate all RE languages. In both cases, the insertion-deletion rules will insert
or delete only one symbol. We also show that if the inserted strings are of length at
most 2 and the deleted strings are of length 1, then the system can generate all RE
languages with splicing rules of radius 3 and insertion-deletion rules with contexts
of length at most 2. Finally, we show that the length of contexts and of the strings
inserted/deleted can be reduced to 1 if the rules are applied in a matrix controlled
manner.

Keywords: Extended H system, splicing, evolving rules, recursively enumer-
able.

1 Introduction
The splicing operation is a formal model of the recombinant behaviour of the DNA

molecules in the presence of restriction enzymes. A splicing system, also called H
system, consists of an alphabet, a set of splicing rules modeling the role of enzymes
and a set of axioms. Several variants have been discussed, depending on the nature of
the axioms, the set of rules etc. A detailed study can be found in [1, 3, 9]. Of course,
it is desirable to have a finite set of rules and a finite set of axioms. Some important
variants can be found in [4, 5, 7, 10, 12, 13, 15].

Splicing systems with a finite set of axioms and rules can only generate regular
languages [2, 11]. Different controlled versions of finite splicing systems are able of
generating all recursively enumerable languages [1, 9].

One such version is that of restricted locally evolving splicing systems, introduced
in [8]. Locally evolving splicing systems are extended H systems where the splicing
rules constantly evolve. The entire set of splicing rules is changed from one step to
another by means of insertion/deletion/substitution operations with respect to given



370 Kalpana Mahalingam, Prithwineel Paul

contexts. These systems are shown to generate all recursively enumerable languages.
In [6], the authors have defined a splicing system that is ”non-reflexively evolving” and
proved that such systems are computationally complete.

In this paper, we investigate locally evolving splicing systems as introduced in [8],
where it was shown that these systems can generate all RE languages when the radius
is 4 and the length of the context of insertion-deletion rules is at most 7. It was con-
jectured that the radius as well as the length of the context can be reduced to 2. In this
paper we provide characterizations of RE languages by such systems in two different
improved versions: the radius at most 2 and the length of the contexts at most 3, re-
spectively when the radius is at most 4 and the length of the context is at most 2. We
also show that instead of using point mutation rules if we use insertion-deletion rules
which can insert two symbols and delete one symbol, then the radius can be decreased
to 3 and the length of the contexts of insertion-deletion rules can be at most 2. Finally,
we show that, if we apply the rules in a matrix controlled way, then the length of the
contexts as well as the inserted/deleted strings is 1 while the radius of the splicing rules
is 3.

This paper is organized as follows: Section 2 recalls the necessary definitions. Sec-
tion 3 illustrates the characterizations of RE languages with these systems with reduced
radius and contexts of the rewriting rules. We end the section with a characterization
of RE languages where the insertion-deletion rules are applied in a matrix controlled
way. Section 4 contains some concluding remarks.

2 Definitions
The reader is referred to [14] for basic elements of formal language theory. We

use the convention that V is a finite alphabet, λ denotes the empty string, V ∗ rep-
resents the set of all strings over V and V + = V ∗ \ {λ}. We recall the follow-
ing from [9]. Let #, $ be two symbols not in V . A splicing rule over V is a string
u1#u2$u3#u4, where ui ∈ V ∗ for 1 ≤ i ≤ 4. For a splicing rule r = u1#u2$u3#u4
and for x, y, w, z ∈ V ∗ we write, (x, y) �r (w, z) iff x = x1u1u2x2, y = y1u3u4y2,
w = x1u1u4y2, z = y1u3u2x2 for x1, x2, y1, y2 ∈ V ∗.

An extended H system with locally evolving splicing rules is a construct

γ = (V, T,A0, Ac, E, C0, P )

where

1. V is a finite alphabet,

2. T ⊆ V is the terminal alphabet,

3. A0 is a finite set of strings from V ∗,

4. Ac ⊆ V ∗ is the finite set of current axioms,

5. E is an alphabet such that E ∩ V 6= ∅,

6. C0 is an initial sequence of splicing rules, C0 = (r1, r2, · · · , rk), ri ∈ E∗#E∗$
E∗#E∗, 1 ≤ i ≤ k,

7. P is a finite set of rewriting rules of the form (u, α/β, v) with u, v ∈ (E ∪
{#, $})∗, and α, β ∈ E ∪ {λ}, α 6= β.



Locally Evolving Splicing Systems 371

The rules in P are called point mutation rules if the rules are of the form α ∈ E, β = λ
(insertion rules) and α = λ, β ∈ E (deletion rules). The splicing rules are constructed
from the template splicing rules inC0 using the point mutation rules. The strings inside
the system are modified by the splicing rules constructed as above. The splicing rules,
if applicable, must be applied. Initially, strings from A0 and Ac are spliced. Later, the
strings produced inside the system are spliced with the strings in Ac using the rules
constructed by applying the insertion-deletion rules to the current set of splicing rule.

The notation =⇒P denotes the usual derivation relation with respect to rules in P .
For a splicing rule r ∈ E∗#E∗$E∗#E∗, we define

P (r) = {r′ | r =⇒P r
′}.

We extend the relation =⇒P to k-tuples of splicing rules by

(r1, r2, · · · , rk) =⇒P (r
′

1, r
′

2, · · · , r
′

k) iff r
′

j ∈ P (rj), 1 ≤ j ≤ k.

Starting from C0, at the time i ≥ 1 we can obtain in this fashion a sequence Ci =
(ri,1, · · · , ri,k) to which the following sequence of splicing rules are associated.

Ri = {r | r = ri,j for some 1 ≤ j ≤ k}.

The set Ri, contains exactly one descendant of every rule in C0; out of the possible
variants which can be obtained due to the possible non-determinism of using the rules
in P , only one is actually chosen. The sets Ai for i ≥ 0 are defined as follows. The
initial set A0 is given. For x ∈ V ∗ and a given set R of splicing rules and for i ≥ 0,
define

δi(x,R) =

{
1 if B
0 otherwise

where B is the condition that “there exists y ∈ Ai ∪ Ac and r ∈ R such that (x, y) �r
(w, z) or (y, x) �r (w, z), for some w, z ∈ V ∗”.

Moreover, Ri(Ai) = {w ∈ V ∗ | (x, y) �r (w, z) or (x, y) �r (z, w) for r ∈ Ri,
x, y ∈ Ai ∪ Ac, {x, y} ∩ Ai 6= ∅}, i ≥ 0. Then, Ai = {x ∈ Ai−1 | δi−1(x,Ri−1) =
0} ∪Ri−1(Ai−1), i ≥ 1 and the language generated by γ is defined by

L(γ) = (
⋃
i≥0Ai) ∩ T ∗.

An extended H system with locally evolving splicing rules γ = (V, T,A0, Ac, E,
C0, P ) is called restricted if card(A0) = 1, card(C0) = 1. The system γ is said to
be of radius at most m if for each i ≥ 1 if Ri = u1#u2$u3#u4, then |uj | ≤ m,
1 ≤ j ≤ 4. Note that in a restricted locally evolving system we have exactly one
splicing rule at each time. The family of languages generated by the restricted locally
evolving H systems is denoted as EHrle(m, c, id), where m is the maximal radius
of the splicing rules, c is the maximal length of the contexts in the insertion/deletion
rules, and id is the maximal length of the string inserted/deleted. In [8], the notation
REHE([m]) and in [9] the notation EH2(FIN, rle([m])) have been used to denote
such systems. For more clarifications, the reader is referred to [8, 9].

3 Results
It was shown in [8] that locally evolving splicing systems with radius 4 and the

length of the context of insertion-deletion rules is less than 7 can generate all RE lan-
guages. It was conjectured that the radius as well as the length of the context can be
reduced to 2. In this section we provide two results which improve the result in [8].



372 Kalpana Mahalingam, Prithwineel Paul

In the next theorem, we prove that the family of languages generated by restricted
locally evolving H systems with splicing rules of radius ≤ 2 is equal to the family
of recursively enumerable languages when the insertion-deletion rules used are point
mutation rules with contexts of length ≤ 3.

Theorem 3.1. EHrle(2, 3, 1) = RE.

Proof: The inclusion EHrle(2, 3, 1) ⊆ RE can be proved in a straightforward
but cumbersome way, or we can invoke for it the Church-Turing thesis. So we only
prove the other inclusion. Let G = (N,T, P0, S) be a grammar in Kuroda normal
form. The rules in G are of the form A → BC,AB → CD,A → a,A → λ where
A,B,C,D ∈ N and a ∈ T. The rules of P0 are labeled in a one-to-one manner. We
construct a restricted extended H system γ = (V, T,A0, Ac, E, C0, P ) with locally
evolving splicing rules such that L(G) = L(γ) as follows:

1. V = N ∪ T ∪ {X,Y, Z, Y 1
r , Y

2
r , Zr, B0},

2. A0 = {XB0SY },

3. Ac = {ZY } ∪ {XαZ | α ∈ N ∪ T ∪ {B0}} ∪ {ZY 1
r , ZCY

2
r , ZrDY | r :

AB → CD}
∪ {ZY 1

r , ZBY
2
r , ZrCY | r : A → BC} ∪ {ZraY | r : A → a} ∪ {ZrY | r :

A→ λ},

4. E = N ∪ T ∪ {X,Y, Z, Y 1
r , Y

2
r , Zr} ∪ {[r, 1], [r, 2], [r, 3], . . . , [r, 13] | r ∈ P0}

∪{d1, d2, d3, d4}∪{e1, e2}∪{f1, f2, . . . , f8}∪{g1, g2, g3}∪{h1, h2, h3, h4},

5. C0 = (#c1$Z#Y ).

The rule of C0 is called the template splicing rule and it evolves using the insertion and
deletion rules (i.e., point mutation rules) present in P . Initially, only the splicing rule
#c1$Z#Y is present in the system. No string of A0 and Ac of the system γ can be
spliced using this rule. Using the point mutation rules in P , the rule of C0 is modified
so that the obtained rules can simulate the rules of P0. In the constructions below, the
point mutation rules are placed on the left-hand side and the splicing rules obtained
after applying the point mutation rules to the splicing rule obtained in the previous step
are placed in the corresponding right-hand side of the table. The proof is based on the
rotate-and-simulate technique introduced in [7].

The splicing rules (A#BY $Z#Y 1
r ), (#AY

1
r $Z#CY

2
r ), (C#Y

2
r $Zr#DY ) (co-

rresponding to rules SA1 − 16, SA2 − 18 and SA3 − 20 respectively) if applied
sequentially can simulate the rule r : AB → CD in the following manner:

(XwA | BY,Z | Y 1
r ) ` (XwAY 1

r , ZBY ); (Rule SA1− 16)
(Xw | AY 1

r , Z | CY 2
r ) ` (XwCY 2

r , ZAY
1
r ); (Rule SA2− 18)

(XwC | Y 2
r , Zr | DY ) ` (XwCDY,ZrY

2
r ); (Rule SA3− 20).

The above mentioned splicing rules are constructed in SA1, SA2, SA3. The rule
r : AB → CD, can be simulated by the application of the splicing rules constructed
in (SA1), (SA2), (SA3).
(SA1) : Starting with the template rule, we construct the rule A#BY $Z#Y 1

r .



Locally Evolving Splicing Systems 373

0. —– #c1$Z#Y
1. (#c1, λ/[r, 1], $) #c1[r, 1]$Z#Y
2. (#, c1/λ, [r, 1]) #[r, 1]$Z#Y
3. (λ, λ/A,#[r, 1]) A#[r, 1]$Z#Y
4. (A#, λ/B, [r, 1]) A#B[r, 1]$Z#Y
5. (B[r, 1]$, λ/[r, 2], Z) A#B[r, 1]$[r, 2]Z#Y
6. (B, [r, 1]/λ, $[r, 2]) A#B$[r, 2]Z#Y
7. (B, λ/Y, $[r, 2]) A#BY $[r, 2]Z#Y
8. (Y $[r, 2], Z/λ,#) A#BY $[r, 2]#Y
9. (Y $[r, 2], λ/[r, 3],#Y ) A#BY $[r, 2][r, 3]#Y
10. ($, [r, 2]/λ, [r, 3]#) A#BY $[r, 3]#Y
11. ([r, 3]#Y, λ/[r, 4], λ) A#BY $[r, 3]#Y [r, 4]
12. ($, [r, 3]/λ,#Y [r, 4]) A#BY $#Y [r, 4]
13. ($#, Y/λ, [r, 4]) A#BY $#[r, 4]
14. ($, λ/Z,#[r, 4]) A#BY $Z#[r, 4]
15. ($Z#, λ/Y 1

r , [r, 4]) A#BY $Z#Y 1
r [r, 4]

16. (Z#Y 1
r , [r, 4]/λ, λ) A#BY $Z#Y 1

r

Only the last splicing rule A#BY $Z#Y 1
r can be applied to the strings from A0

andAc. Other rules are not applicable, since the symbols c1, [r, 1], [r, 2], [r, 3] and [r, 4]
are present in the splicing rules. After the application of the rule A#BY $Z#Y 1

r , the
strings XwAY 1

r and ZBY are produced. The first string again can be spliced with the
string ZY 2

r using the splicing rule #AY 1
r $Z#Y

2
r , but the string ZBY cannot generate

terminal strings.

(SA2) : The splicing rule A#BY $Z#Y 1
r is now modified into the splicing rule

#AY 1
r $Z#Y

2
r as follows:

0. —– A#BY $Z#Y 1
r

1. (λ, λ/[r, 5], A#) [r, 5]A#BY $Z#Y 1
r

2. ([r, 5], A/λ,#B) [r, 5]#BY $Z#Y 1
r

3. ([r, 5]#, B/λ, Y ) [r, 5]#Y $Z#Y 1
r

4. ([r, 5]#, Y/λ, $) [r, 5]#$Z#Y 1
r

5. ([r, 5]#, λ/A, $) [r, 5]#A$Z#Y 1
r

6. ([r, 5]#A, λ/[r, 6], $) [r, 5]#A[r, 6]$Z#Y 1
r

7. (λ, [r, 5]/λ,#A[r, 6]) #A[r, 6]$Z#Y 1
r

8. ([r, 6]$, λ/[r, 7], Z) #A[r, 6]$[r, 7]Z#Y 1
r

9. (A, [r, 6]/λ, $[r, 7]) #A$[r, 7]Z#Y 1
r

10. (#A, λ/Y 1
r , $[r, 7]) #AY 1

r $[r, 7]Z#Y
1
r

11. (Y 1
r $[r, 7], Z/λ,#) #AY 1

r $[r, 7]#Y
1
r

12. ([r, 7]#Y 1
r , λ/[r, 8], λ) #AY 1

r $[r, 7]#Y
1
r [r, 8]

13. ($, [r, 7]/λ,#Y 1
r [r, 8]) #AY 1

r $#Y
1
r [r, 8]

14. ($, λ/Z,#Y 1
r [r, 8]) #AY 1

r $Z#Y
1
r [r, 8]

15. (Z#, Y 1
r /λ, [r, 8]) #AY 1

r $Z#[r, 8]
16. ($Z#, λ/Y 2

r , [r, 8]) #AY 1
r $Z#Y

2
r [r, 8]

17. (Z#, λ/C, Y 2
r [r, 8]) #AY 1

r $Z#CY
2
r [r, 8]

18. (#CY 2
r , [r, 8]/λ, λ) #AY 1

r $Z#CY
2
r

After splicing the strings XwAY 1
r and ZCY 2

r using the rule #AY 1
r $Z#CY

2
r , the

strings XwCY 2
r and ZAY 1

r are produced.
(SA3) : Now, #AY 1

r $Z#CY
2
r is modified into C#Y 2

r $Zr#DY :



374 Kalpana Mahalingam, Prithwineel Paul

0. —– #AY 1
r $Z#CY

2
r

1. (λ, λ/[r, 9],#A) [r, 9]#AY 1
r $Z#CY

2
r

2. ([r, 9]#, A/λ, Y 1
r ) [r, 9]#Y 1

r $Z#CY
2
r

3. ([r, 9]#, λ/[r, 10], Y 1
r ) [r, 9]#[r, 10]Y 1

r $Z#Y
2
r

4. ([r, 9], λ/C,#[r, 10]) [r, 9]C#[r, 10]Y 1
r $Z#CY

2
r

5. (λ, [r, 9]/λ,C#[r, 10]) C#[r, 10]Y 1
r $Z#CY

2
r

6. ([r, 10], Y 1
r /λ, $) C#[r, 10]$Z#CY 2

r

7. ([r, 10], λ/Y 2
r , $) C#[r, 10]Y 2

r $Z#CY
2
r

8. ([r, 10]Y 2
r $, λ/[r, 11], Z) C#[r, 10]Y 2

r $[r, 11]Z#CY
2
r

9. (#, [r, 10]/λ, Y 2
r $[r, 11]) C#Y 2

r $[r, 11]Z#CY
2
r

10. ([r, 11], Z/λ,#C) C#Y 2
r $[r, 11]#CY

2
r

11. ([r, 11]#, C/λ, Y 2
r ) C#Y 2

r $[r, 11]#Y
2
r

12. ([r, 11], λ/Zr,#Y
2
r ) C#Y 2

r $[r, 11]Zr#Y
2
r

13. ([r, 11]Zr#, λ/[r, 12], Y
2
r ) C#Y 2

r $[r, 11]Zr#[r, 12]Y 2
r

14. ($, [r, 11]/λ, Zr#[r, 12]) C#Y 2
r $Zr#[r, 12]Y 2

r

15. ($Zr, λ/[r, 13],#[r, 12]) C#Y 2
r $Zr[r, 13]#[r, 12]Y 2

r

16. ([r, 13]#, [r, 12]/λ, Y 2
r ) C#Y 2

r $Zr[r, 13]#Y
2
r

17. ([r, 13]#, Y 2
r /λ, λ) C#Y 2

r $Zr[r, 13]#
18. ([r, 13]#, λ/D, λ) C#Y 2

r $Zr[r, 13]#D
19. ([r, 13]#D,λ/Y, λ) C#Y 2

r $Zr[r, 13]#DY
20. (Zr, [r, 13]/λ,#DY ) C#Y 2

r $Zr#DY

Now the string XwCY 2
r can be spliced further with ZrDY using the rule SA3 − 20

to obtain XwCDY and ZrY 2
r . Note that ZrY 2

r cannot be used further to produce
terminal strings.

Since there exists only one splicing rule at any time in the system, after completely
simulating one rule in P0, either the system simulates another rule of P0 or will termi-
nate the computation. The simulation of rules in P0 is done at the end of the strings,
hence the strings should be circularly rotated. But, to proceed further the system must
go back to the template splicing rule. Hence, the splicing rule C#Y 2

r $Zr#DY is
transformed into (#c1$Z#Y ).

(T1) : In the next step the rule C#Y 2
r $Zr#DY is transformed into the template

rule in C0.

0. —– C#Y 2
r $Zr#DY

1. (λ, λ/d1, C#Y
2
r ) d1C#Y

2
r $Zr#DY

2. (d1C#, Y
2
r /λ, $) d1C#$Zr#DY

3. (d1, C/λ,#$) d1#$Zr#DY
4. (d1#$, Zr/λ,#DY ) d1#$#DY
5. (d1#, λ/c1, $#) d1#c1$#DY
6. (d1#c1, λ/d2, $#) d1#c1d2$#DY
7. (λ, d1/λ,#c1d2) #c1d2$#DY
8. (c1d2$, λ/d3,#D) #c1d2$d3#DY
9. (c1, d2/λ, $d3) #c1$d3#DY
10. (d3#, D/λ, Y ) #c1$d3#Y
11. ($d3, λ/Z,#Y ) #c1$d3Z#Y
12. ($, d3/λ, Z#Y ) #c1$Z#Y

The construction of splicing rule to simulate the rule r : A → BC is similar and
hence we omit it.
(SB1) : Construction of splicing rules to simulate the rule r : A→ a:



Locally Evolving Splicing Systems 375

0. —– #c1$Z#Y
1. (#, λ/[r, 1], c1) #[r, 1]c1$Z#Y
2. (#[r, 1], c1/λ, $) #[r, 1]$Z#Y
3. (#[r, 1]$, λ/[r, 2], Z#) #[r, 1]$[r, 2]Z#Y
4. (#, [r, 1]/λ, $[r, 2]) #$[r, 2]Z#Y
5. (#, λ/A, $[r, 2]) #A$[r, 2]Z#Y
6. (#A, λ/Y, $[r, 2]) #AY $[r, 2]Z#Y
7. (Y $[r, 2], Z/λ,#Y ) #AY $[r, 2]#Y
8. (Y $[r, 2], λ/[r, 3],#Y ) #AY $[r, 2][r, 3]#Y
9. ([r, 2][r, 3]#, λ/a, Y ) #AY $[r, 2][r, 3]#aY
10. ($, [r, 2]/λ, [r, 3]#a) #AY $[r, 3]#aY
11. ($, λ/Zr, [r, 3]#a) #AY $Zr[r, 3]#aY
12. ($Zr, [r, 3]/λ,#aY ) #AY $Zr#aY

Similarly, we can construct the splicing rule #AY $Zr#Y which simulates the rule
r : A→ λ.

(T2) : Now the rule #AY $Z#aY will be transformed to the template rule
#c1$Zr#Y .

0. —– #AY $Z#aY
1. (λ, λ/d1,#AY ) d1#AY $Z#aY
2. (d1#, A/λ, Y $) d1#Y $Z#aY
3. (d1#, Y/λ, $) d1#$Z#aY
4. (d1#, λ/d2, $Z) d1#d2$Z#aY
5. (d1#, λ/c1, d2$) d1#c1d2$Z#aY
6. (λ, d1/λ,#c1d2) #c1d2$Z#aY
7. (c1d2$, λ/d3, Z) #c1d2$d3Z#aY
8. (#c1, d2/λ, $d3) #c1$d3Z#aY
9. (d3Z#, a/λ, Y ) #c1$d3Z#Y
10. ($, d3/λ, Z#Y ) #c1$Z#Y

We now construct splicing rules necessary for rotating the current string.

(ROT1) : 0. —– #c1$Z#Y
1. (λ, d4/λ,#c1) d4#c1$Z#Y
2. (d4#, c1/λ, $Z) d4#$Z#Y
3. (d4#, λ/α, $Z) d4#α$Z#Y
4. (d4#α, λ/Y, $Z) d4#αY $Z#Y
5. (λ, d4/λ,#αY ) #αY $Z#Y

In (ROT2) the splicing rule Xα#Z$X# is constructed, which adds the symbol α ∈
N ∪ T ∪ {B0} to the right of the marker X .



376 Kalpana Mahalingam, Prithwineel Paul

(ROT2) : 0. —– #αY $Z#Y
1. (λ, λ/f1,#αY ) f1#αY $Z#Y
2. (f1#, α/λ, Y ) f1#Y $Z#Y
3. (f1#, Y/λ, $) f1#$Z#Y
4. (f1, λ/X,#$) f1X#$Z#Y
5. (f1X#, λ/f2, $Z) f1X#f2$Z#Y
6. (λ, f1/λ,X#f2) X#f2$Z#Y
7. (X,λ/α,#f2) Xα#f2$Z#Y
8. (Xα#, λ/Z, f2) Xα#Zf2$Z#Y
9. (Zf2$, λ/f3, Z#Y ) Xα#Zf2$f3Z#Y
10. (Z, f2/λ, $f3) Xα#Z$f3Z#Y
11. (Z$f3, Z/λ,#Y ) Xα#Z$f3#Y
12. (f3#Y, λ/f4, λ) Xα#Z$f3#Y f4
13. ($, f3/λ,#Y f4) Xα#Z$#Y f4
14. ($#, Y/λ, f4) Xα#Z$#f4
15. (Z$, λ/X,#f4) Xα#Z$X#f4
16. (X#, f4/λ, λ) Xα#Z$X#

Using rules ROT1 − 5 and ROT2 − 16 the symbol α ∈ N ∪ T ∪ {B0} adjacent to
the marker Y in XwαY can be rotated to obtain XαwY .

(Xw|αY,Z|Y ) ` (XwY,ZαY ).

The string XwY can be spliced further using ROT2−16 but ZαY will never lead
to terminal strings.

(Xα|Z,X|wY ) ` (XαwY,XZ).

After rotation is complete, the rule Xα#Z$X# is transformed into the rule
#c1$Z#Y .

(T3) :

0. —– Xα#Z$X#
1. (α#Z, λ/f5, $X) Xα#Zf5$X#
2. (Xα#, Z/λ, f5) Xα#f5$X#
3. (X,α/λ,#f5) X#f5$X#
4. (λ, λ/f6, X#f5) f6X#f5$X#
5. (f6, X/λ,#f5) f6#f5$X#
6. (f6#, λ/c1, f5) f6#c1f5$X#
7. (λ, f6/λ,#c1f5) #c1f5$X#
8. (c1f5$, λ/f7, X#) #c1f5$f7X#
9. (c1, f5/λ, $f7) #c1$f7X#
10. (f7X#, λ/f8, λ) #c1$f7X#f8
11. (f7, X/λ,#f8) #c1$f7#f8
12. ($, f7/λ,#f8) #c1$#f8
13. ($, λ/Z,#f8) #c1$Z#f8
14. (Z#, λ/Y, f8) #c1$Z#Y f8
15. (Z#Y, f8/λ, λ) #c1$Z#Y

Then either the process can be repeated by constructing all the splicing rules that sim-
ulate rules in P0 as well as the rules which helps with rotation or the following termi-
nating rules can be constructed.



Locally Evolving Splicing Systems 377

The terminating rules are constructed in (TE1) and (TE2). The ruleXB0#$#ZY ,
constructed from the template splicing rule in (TE1), removesXB0 from the left hand
side of the string XB0wY and the rule constructed in (TE2) removes the marker Y.
(TE1) :

0. —– #c1$Z#Y
1. (λ, λ/g1,#c1) g1#c1$Z#Y
2. (g1#, c1/λ, $Z) g1#$Z#Y
3. (g1, λ/X,#$) g1X#$Z#Y
4. (g1X#, λ/g2, $Z#) g1X#g2$Z#Y
5. (λ, g1/λ,X#g2) X#g2$Z#Y
6. (X,λ/B0,#g2$) XB0#g2$Z#Y
7. (g2$, λ/g3, Z#Y ) XB0#g2$g3Z#Y
8. (XB0#, g2/λ, $g3) XB0#$g3Z#Y
9. (g3, Z/λ,#Y ) XB0#$g3#Y
10. (g3#, λ/Z, Y ) XB0#$g3#ZY
11. (#$, g3/λ,#ZY ) XB0#$#ZY

The produced splicing rule isXB0#$#ZY . This rule is applicable to stringsXB0wY
and ZY .

(XB0 | wY, |ZY ) ` (XB0ZY,wY )

i.e., XB0 is removed and wY is spliced further.
(TE2) : The rule #Y $ZY# is constructed fromXB0#$#ZY . This rule removes

the marker Y .

0. —– XB0#$#ZY
1. (XB0#, λ/h1, $#) XB0#h1$#ZY
2. (X,B0/λ,#h1) X#h1$#ZY
3. (λ, λ/h2, X#h1) h2X#h1$#ZY
4. (h2, X/λ,#h1) h2#h1$#ZY
5. (h2#, λ/Y, h1) h2#Y h1$#ZY
6. (λ, h2/λ,#Y h1) #Y h1$#ZY
7. (Y h1$, λ/h3,#ZY ) #Y h1$h3#ZY
8. (#Y, h1/λ, $h3) #Y $h3#ZY
9. (h3#, Z/λ, Y ) #Y $h3#Y
10. (h3#Y, λ/h4, λ) #Y $h3#Y h4
11. (h3#, Y/λ, h4) #Y $h3#h4
12. ($, h3/λ,#h4) #Y $#h4
13. ($, λ/Z,#h4) #Y $Z#h4
14. (Z, λ/Y,#h4) #Y $ZY#h4
15. (ZY#, h4/λ, λ) #Y $ZY#

The rule ROT2− 15 can be applied to strings wY and ZY to obtain w and ZY Y .

(w | Y,ZY | ) ` (w,ZY Y ).

By splicing the stringZY Y with strings fromAc, terminal strings can never be reached.
If the string w is in T ∗ then w ∈ L(G). Since w does not contain any markers, no rule
is applicable to w even if it is not a terminal string. Also the wrong application of the
insertion-deletion rules cannot generate splicing rules which lead to terminal strings.
The computation stops after the construction of rule TE2 − 15 is complete, since the



378 Kalpana Mahalingam, Prithwineel Paul

rule #Y $ZY# cannot be modified further. Thus we can conclude that L(G) = L(γ).
This implies RE ⊆ EHrle2(2, 3, 1).

The next result is a variation of Theorem 3.1 in which we give a characterization of
RE languages when the radius of the system is at most 4 and the length of the context
of the insertion-deletion rules is at most 2 with point mutation rules. Thus we have the
following.

Theorem 3.2. RE = EHrle(4, 2, 1).

Proof: We only prove the inclusion RE ⊆ EHrle(4, 2, 1). Let L ∈ RE and
G = (N,T, P0, S) be a type-0 grammar in Kuroda normal form generating L.

We construct a restricted extended H system with locally evolving splicing rules
γ = (V, T,A0, Ac, E, C0, P ) where

1. V = {X,Y, Z,B0} ∪N ∪ T ,

2. A0 = {XB0SY },

3. Ac = {ZY } ∪ {ZvY | u→ v ∈ P0} ∪ {XαZ | α ∈ N ∪ T ∪ {B0}},

4. E = N ∪ T ∪ {X,Y, Z,B0, c1, e1, e2, . . . , e6, d2 . . . , d6, f1, f2, . . . , f5, g1, g2,
. . . , g6, h1, h2, . . . , h6, k1, k2, . . . , k7} ∪ {[r, 1], [r, 2], [r, 3], [r, 4], [r, 5], [r, 6],
[r, 7], [r, 8] | r : u→ v ∈ P0},

5. C0 = (c1#Y $Z#).

We only construct the splicing rule which simulates the rule r : AB → CD and
omit the constructions of rules that simulate A→ BC, A→ a and A→ λ as they are
similar.

The rule #ABY $Z#CDY simulates the rule r : AB → CD ∈ P0. The fol-
lowing insertion-deletion rules with context ≤ 2 are constructed which transforms the
splicing rule c1#Y $Z# into #ABY $Z#CDY .

(SA1) : 0. —– c1#Y $Z#
1. (c1#, λ/[r, 1], Y ) c1#[r, 1]Y $Z#
2. (λ, c1/λ,#[r, 1]) #[r, 1]Y $Z#
3. (#, λ/A, [r, 1]Y ) #A[r, 1]Y $Z#
4. ([r, 1]Y, λ/[r, 2], $Z) #A[r, 1]Y [r, 2]$Z#
5. (#A, [r, 1]/λ, Y [r, 2]) #AY [r, 2]$Z#
6. (#A, λ/B, Y [r, 2]) #ABY [r, 2]$Z#
7. ([r, 2]$, λ/[r, 3], Z#) #ABY [r, 2]$[r, 3]Z#
8. (Y, [r, 2]/λ, $[r, 3]) #ABY $[r, 3]Z#
9. ([r, 3]Z, λ/[r, 4],#) #ABY $[r, 3]Z[r, 4]#
10. ($, [r, 3]/λ, Z[r, 4]) #ABY $Z[r, 4]#
11. ([r, 4]#, λ/C, λ) #ABY $Z[r, 4]#C
12. ([r, 4]#, λ/[r, 5], C) #ABY $Z[r, 4]#[r, 5]C
13. (Z, [r, 4]/λ,#[r, 5]) #ABY $Z#[r, 5]C
14. ([r, 5]C, λ/[r, 6], λ) #ABY $Z#[r, 5]C[r, 6]
15. (Z#, [r, 5]/λ,C[r, 6]) #ABY $Z#C[r, 6]
16. (#C, λ/D, [r, 6]) #ABY $Z#CD[r, 6]
17. (D,λ/Y, [r, 6]) #ABY $Z#CDY [r, 6]
18. (DY, [r, 6]/λ, λ) #ABY $Z#CDY



Locally Evolving Splicing Systems 379

Thus the obtained splicing rules are of the form #uY $Z#vY which simulates the
rules r : u→ v ∈ P0. Therefore the strings XwuY and ZvY can be spliced to obtain
XwvY and ZuY .

(Xw | uY, Z | vY ) ` (XwvY,ZuY ).

The first string XwvY can be spliced further but ZuY will never lead to a terminal
string.

(T1) : We now proceed further to construct the template splicing rule c1#Y $Z#Y
from the rule SA1− 18.

0. —– #ABY $Z#CDY
1. (Z#, λ/e1, CD) #ABY $Z#e1CDY
2. (#e1, C/λ,DY ) #ABY $Z#e1DY
3. (#e1, D/λ, Y ) #ABY $Z#e1Y
4. (Z#, λ/e2, e1Y ) #ABY $Z#e2e1Y
5. (#e2, e1/λ, Y ) #ABY $Z#e2Y
6. ($Z, λ/e3,#e2) #ABY $Ze3#e2Y
7. (e3#, e2/λ, Y ) #ABY $Ze3#Y
8. (Y $, λ/e4, Ze3) #ABY $e4Ze3#Y
9. (e4Z, e3/λ,#Y ) #ABY $e4Z#Y
10. (Y, λ/e5, $e4) #ABY e5$e4Z#Y
11. (e5$, e4/λ, Z#) #ABY e5$Z#Y
12. (#A,B/λ, Y e5) #AY e5$Z#Y
13. (#, A/λ, Y e5) #Y e5$Z#Y
14. (#, λ/e6, Y e5) #e6Y e5$Z#Y
15. (e6Y, e5/λ, $) #e6Y $Z#Y
16. (λ, λ/c1,#e6) c1#e6Y $Z#Y
17. (c1#, e6/λ, Y ) c1#Y $Z#Y

We now construct splicing rules which rotate the symbols between the markers X
and Y of the string XwY where w ∈ (N ∪ T ∪ {B0})∗.
At first, α ∈ N ∪ T ∪ {B0} is cut from the right hand side of the string XwαY . This
operation can be done by application of the splicing rule #αY $Z#Y in ROT1− 15.

ROT1 : 0. —– c1#Y $Z#
1. (λ, λ/d1, c1#) d1c1#Y $Z#
2. (d1, c1/λ,#Y ) d1#Y $Z#
3. (d1#, λ/α, Y ) d1#αY $Z#
4. (d1#, λ/d2, αY ) d1#d2αY $Z#
5. (λ, d1/λ,#d2) #d2αY $Z#
6. (d2α, λ/d3, Y ) #d2αd3Y $Z#
7. (#, d2/λ, αd3) #αd3Y $Z#
8. (d3Y, λ/d4, $) #αd3Y d4$Z#
9. (#α, d3/λ, Y d4) #αY d4$Z#
10. (d4$, λ/d5, Z) #αY d4$d5Z#
11. (αY, d4/λ, $d5) #αY $d5Z#
12. (d5Z, λ/d6,#) #αY $d5Zd6#
13. (Y $, d5/λ, Zd6) #αY $Zd6#
14. (d6#, λ/Y, λ) #αY $Zd6#Y
15. ($Z, d6/λ,#Y ) #αY $Z#Y



380 Kalpana Mahalingam, Prithwineel Paul

After application of the rule #αY $Z#Y to strings XwαY and ZY, the strings XwY
and ZαY are produced.

Using the rule ROT2− 22 the string XwY is spliced with XαZ to obtain XαwY
and XZ.

(ROT2) : 0. —– #αY $Z#Y
1. (λ, λ/k1,#α) k1#αY $Z#Y
2. (k1#, α/λ, Y ) k1#Y $Z#Y
3. (k1#, Y/λ, $) k1#$Z#Y
4. (k1, λ/X,#$) k1X#$Z#Y
5. (k1X,λ/α,#$) k1Xα#$Z#Y
6. (k1X,λ/k2, α#) k1Xk2α#$Z#Y
7. (λ, k1/λ,Xk2) Xk2α#$Z#Y
8. (k2α, λ/k3,#$) Xk2αk3#$Z#Y
9. (X, k2/λ, αk3) Xαk3#$Z#Y
10. (k3#, λ/k4, $) Xαk3#k4$Z#Y
11. (Xα, k3/λ,#k4) Xα#k4$Z#Y
12. (α#, λ/Z, k4) Xα#Zk4$Z#Y
13. (k4$, λ/k5, Z) Xα#Zk4$k5Z#Y
14. (#Z, k4/λ, $k5) Xα#Z$k5Z#Y
15. (k5, Z/λ,#Y ) Xα#Z$k5#Y
16. (k5#, λ/k6, Y ) Xα#Z$k5#k6Y
17. (k6Y, λ/k7, λ) Xα#Z$k5X#k6Y k7
18. (k6, Y/λ, k7) Xα#Z$k5#k6k7
19. (k5#, k6/λ, k7) Xα#Z$k5#k7
20. ($, k5/λ,#k7) Xα#Z$#k7
21. ($, λ/X,#k7) Xα#Z$X#k7
22. (X#, k7/λ, λ) Xα#Z$X#

The splicing rules constructed at the end of (ROT1) and (ROT2) rotate one symbol in-
side the markersX and Y . After completely rotating one symbol, the ruleXα#Z$X#
will again be transformed into the rule c1#Y $Z#. The constructions of the template
rule from the rotation rule and that of the terminating rule from the template rule are
similar to that of the construction in Theorem 3.1 and hence we omit it.

If the string generated after application of the terminating rule is over terminals,
then w ∈ L(G). The splicing rules constructed from the template contains at least one
of the markers X and/or Y . Hence, even if w is not a terminal string, it cannot be
spliced further, since it does not contain any markers.

Since, the terminating rule cannot be modified further and the computation stops
after application of this rule, L(γ) = L(G). The splicing rules constructed have radius
≤ 4, so we can conclude that RE ⊆ EHrle(4, 3, 1).

In the next result, instead of using point mutation rules, we use insertion rules
which can insert at most two symbols, but the deletion rules remove only one symbol.
In Theorem 3.2 the radius of the splicing rules is ≤ 4, but the insertion-deletion rules
are point mutation rules, having contexts of length ≤ 2. If insertion rules are allowed
to insert at most two symbols, then the radius of the splicing rules can be reduced to 3.
Since the construction in the proof is similar to that of the above results, we omit it.

Theorem 3.3. RE = EHrle(3, 2, 2).

In the next result, we investigate the computational power of restricted locally
evolving splicing systems, where the insertion-deletion rules are applied in a matrix



Locally Evolving Splicing Systems 381

controlled manner. Matrix insertion-deletion systems are investigated in [10]. In the
following result, we show that, if matrix controlled insertion-deletion rules are used,
then locally evolving splicing systems can generate all RE languages, where the splic-
ing rules are of radius ≤ 3, and insertion-deletion rules are point mutation rules with
contexts of length 1.

In matrix insertion-deletion system, a set of rules are applied in a sequential man-
ner, i.e., if the rules of the matrix Rn = [rn1, rn2, . . . , rnm], n,m ∈ N is applied, it
means that the rules rn1, rn2, . . . , rnm are applied in sequence.
We denote by MatkEHrle(m, c, id) the family of languages generated by matrix re-
stricted locally evolving splicing systems, where k represents the maximum number
of insertion-deletion rules required to transform one splicing rule to another, white the
other parameters are as above.

Theorem 3.4. RE =Mat10EHrle(3, 1, 1).

Proof: We only prove the inclusion RE ⊆Mat10EHrle(3, 1, 1).
Let G = (N,T, P0, S) be a grammar in Kuroda normal form with the rules in P0

labeled in one-to-one manner. We construct a restricted extended H system γ =
(V, T,A0, Ac, E, C0, P ) with locally evolving splicing rules such that L(G) = L(γ).

• V = N ∪ T ∪ {X,Y, Z,B0},

• A0 = {XB0SY },

• Ac = {ZY } ∪ {XαZ|α ∈ N ∪ T ∪ {B0}} ∪ {ZCDY |ri : AB → CD}
∪ {ZBCY |ri : A→ BC} ∪ {ZaY | ri : A→ a},

• E = N∪T∪{X,Y, Z}∪{c1, c2}∪{d1, d2}∪{e1, k1}∪{f1, f2, f3}∪{g1, g2}∪
{h1},

• C0 = (c1#$Z#Y ).

In this proof, the insertion-deletion rules work in the matrix controlled manner.
Thus, P = {Ri, R

′

i | ri ∈ P} ∪ {Rα, R
′

α | α ∈ V } ∪ {RB0
, R

′

B0
} is the set contain-

ing the matrices. We discuss the construction of #ABY $Z#CDY from c1#Y $Z#.
Note that the rules of P0 are labeled with ri and for each rule there exist matrices
Ri and R

′

i. The sequential application of the rules of Ri constructs the splicing rule,
which simulates the rule ri ∈ P0 and the sequential application of rules from R

′

i re-
constructs the template splicing rule from the splicing rule constructed for simulating
the ri labeled rules.

(R1) : The ri : AB → CD rule is simulated by the splicing rule #ABY $Z#CDY .
After applying the rules in Ri = [ri1, ri2, . . . , ri6], the template splicing rule forms the
splicing rule #ABY $Z#CDY .

0. —– c1#$Z#Y
1. ri1 : (#, λ/C, Y ) c1#$Z#CY
2. ri2 : (C, λ/D, Y ) c1#$Z#CDY
3. ri3 : (#, λ/A, $) c1#A$Z#CDY
4. ri4 : (A, λ/B, $) c1#AB$Z#CDY
5. ri5 : (B, λ/Y, $) c1#ABY $Z#CDY
6. ri6 : (λ, c1/λ,#) #ABY $Z#CDY

(T1) : After the complete simulation of the rule ri : AB → CD, the template
splicing rule is constructed. If the rules of R

′

i = [r
′

i1, r
′

i2, . . . , r
′

i8] are applied, then the
template splicing rules are produced from #ABY $Z#CDY .



382 Kalpana Mahalingam, Prithwineel Paul

0. —– #ABY $Z#CDY

1. r
′

i1 : (Z, λ/d1,#) #ABY $Zd1#CDY

2. r
′

i2 : (B, Y/λ, $) #AB$Zd1#CDY

3. r
′

i3 : (A,B/λ, $) #A$Zd1#CDY

4. r
′

i4 : (#, A/λ, $) #$Zd1#CDY

5. r
′

i5 : (#, C/λ,D) #$Zd1#DY

6. r
′

i6 : (#, D/λ, Y ) #$Zd1#Y

7. r
′

i7 : (λ, λ/c1,#) c1#$Zd1#Y

8. r
′

i8 : (Z, d1/λ,#) c1#$Z#Y

We skip the construction for the rules A → BC, A → a and A → λ as they are
similar to those considered in previous proofs. We now construct the necessary rotation
rules.
(ROT1) : For each α ∈ N∪T∪{B0}, we construct splicing rule #αY $Z#Y from the
template splicing rule c1#Y $Z# by application of the rules inRα = [rα1, rα2, . . . , rα5].

0. —– c1#$Z#Y
1. rα1 : (#, λ/e1, $#) c1#e1$Z#Y
2. rα2 : (e1, λ/α, $) c1#e1α$Z#Y
3. rα3 : (α, λ/Y, $) c1#e1αY $Z#Y
4. rα4 : (#, e1/λ, α) c1#αY $Z#Y
5. rα5 : (λ, c1/λ,#) #αY $Z#Y

(ROT2) : Now the ruleXα#Z$X# is constructed from #αY $Z#Y to complete
the rotation of the symbol α ∈ N∪T ∪{B0}. This is possible only after the application
of rules in R

′

α = [r
′

α1, r
′

α2, . . . , r
′

α10].

0. —– #αY $Z#Y

1. r
′

α1 : (λ, λ/f1,#) f1#αY $Z#Y

2. r
′

α2 : (#, α/λ, Y ) f1#Y $Z#Y

3. r
′

α3 : (#, Y/λ, $) f1#$Z#Y

4. r
′

α4 : ($, Z/λ,#$) f1#$#Y

5. r
′

α5 : (#, Y/λ, λ) f1#$#

6. r
′

α6 : ($, λ/X,#) f1#$X#

7. r
′

α7 : (#, λ/Z, $) f1#Z$X#

8. r
′

α8 : (f1, λ/α, Z) f1α#Z$X#

9. r
′

α9 : (f1, λ/X, α) f1Xα#Z$X#

10. r
′

α10 : (λ, f1/λ,X) Xα#Z$X#

(T2) : The rule c1#Y $Z# is constructed from Xα#Z$X# by applying R
′′

α =
[r

′′

α1, r
′′

α2, . . . , r
′′

α9].



Locally Evolving Splicing Systems 383

0. —– Xα#Z$X#

1. r
′′

α1 : (#, λ/k1, Z) Xα#k1Z$X#

2. r
′′

α2 : ($, λ/X,#) Xα#k1Z$#

3. r
′′

α3 : ($, λ/Z,#) Xα#k1Z$Z#

4. r
′′

α4 : (#, λ/Y, λ) Xα#k1Z$Z#Y

5. r
′′

α5 : (X,α/λ,#) X#k1Z$Z#Y

6. r
′′

α6 : (X,λ/c1,#) Xc1#k1Z$Z#Y

7. r
′′

α7 : (λ,X/λ, c1) c1#k1Z$Z#Y

8. r
′′

α8 : (#, k1/λ, Z) c1#Z$Z#Y

9. r
′′

α9 : (#, Z/λ, $) c1#$Z#Y

Now we construct splicing rules that remove the markers from the given string and
terminates the computation process.
(TE1) : The marker X is removed after application of the splicing rule XB0#$#ZY
which is constructed after application of RB0 = [rB01, . . . , rB07] from c1#Y $Z#.

0. —– c1#$Z#Y
1. rB01 : (#, λ/g1, $) c1#g1$Z#Y
2. rB02 : ($, Z/λ,#) c1#g1$#Y
3. rB03 : (#, λ/Z, Y ) c1#g1$#ZY
4. rB04 : (c1, λ/B0,#) c1B0#g1$#ZY
5. rB05 : (c1, λ/X,B0) c1XB0#g1$#ZY
6. rB06 : (λ, c1/λ,X) XB0#g1$#ZY
7. rB07 : (#, g1/λ, $) XB0#$#ZY

(TE2) : Similarly, #Y $ZY# is constructed to remove the marker Y. The rules in
R

′

B0
= [r

′

B01
, . . . , r

′

B09
] transforms XB0#$#ZY into #Y $ZY#.

0. —– XB0#$#ZY

1. r
′

B01
: (Y, λ/h1, λ) XB0#$#ZY h1

2. r
′

B02
: (Z, Y/λ, h1) XB0#$#Zh1

3. r
′

B03
: (#, Z/λ, h1) XB0#$#h1

4. r
′

B04
: (#, λ/Y, $) XB0#Y $#h1

5. r
′

B05
: ($, λ/Z,#) XB0#Y $Z#h1

6. r
′

B06
: (Z, λ/Y,#) XB0#Y $ZY#h1

7. r
′

B07
: (X,B0/λ,#) X#Y $ZY#h1

8. r
′

B08
: (λ,X/λ,#) #Y $ZY#h1

9. r
′

B09
: (#, h1/λ, λ) #Y $ZY#

Since the rules constructed at the end of each section are same as in the proof of
Theorem 3.2 and A0 contains the string XB0SY , it follows from Theorem 3.2 that
L(γ) = L(G).

4 Conclusions
In this paper, we have shown that recursively enumerable languages can be gener-

ated by restricted locally evolving splicing systems with reduced contexts of insertion-
deletion rules and radius. It was conjectured [9] that the radius as well as the length of
the context can be reduced to 2. Several results supporting this conjecture were given,



384 Kalpana Mahalingam, Prithwineel Paul

without completely solving the conjecture, as the results mentioned in this paper may
not be optimal.

References
[1] CALUDE C. and PAUN G.: Computing with cells and atoms: An introduction to

quantum, DNA and membrane computing, CRC Press, (2000).

[2] CULIK K. II and HARJU T.: Splicing semigroups of dominoes and DNA, Dis-
crete Applied Mathematics, 31 (1991), 261-277.

[3] FREUND R., KARI L. and PAUN G.: DNA computing based on splicing: the
existence of universal computers, Theory of Computing Systems, 32 (1999), 69-
112.

[4] JEGANATHAN L. and RAMA R.: Matrix splicing systems, International Jour-
nal of Computer Mathematics, 87 (2010), 278-309.

[5] KRITHIVASAN K., CHAKARAVARTHY V.T. and RAMA R.: Array splicing
systems, LNCS, 1218 (1997), 346-365.

[6] LOOS R.: An alternative definition of splicing, Theoretical Computer Science,
358 (2006), 75-87.

[7] PAUN G.: Regular extended H systems are computationally universal, Journal of
Automata, Languages and Combinatorics, 1(1996), 27-36.

[8] PAUN G., ROZENBERG G. and SALOMAA A.: Computing by splicing: Pro-
grammed and evolving splicing systems, IEEE International Conference on Evo-
lutionary Computing, Indianapolis, (1997), 273-277.

[9] PAUN G., ROZENBERG G. and SALOMAA A.: DNA computing. New comput-
ing paradigms, Springer, (1998).

[10] PETRE I. and VERLAN S.: Matrix insertion-deletion systems, Theoretical Com-
puter Science, 456 (2012), 80-88.

[11] PIXTON D. : Regularity of splicing languages, Discrete Applied Mathematics,
69 (1996), 101-124.

[12] RAMA R. and KRISHNA S.N.: Contextual array splicing systems,
SPIRE/CRIWG, (1999), 168-175.

[13] RAMA R. and RAGHAVAN U.: Splicing array systems, International Journal of
Computer Mathematics, 73 (1999), 167-182.

[14] SALOMAA A.: Formal languages, Academic Press, New York, (1973).

[15] SANTHANAM R. and KRITHIVASAN K.: Graph splicing systems, Discrete
Applied Mathematics, 154 (2006), 1264-1278.


