
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 19, Number 4, 2016, 360–368

Cellular Automata Hardware
Implementations - an Overview

Monica DASCĂLU

Politehnica University of Bucharest, Romania and Center for New
Electronic Architectures, Romanian Academy, Bucharest, Romania

Email: monica.dascalu@upb.ro

Abstract. Cellular automata model grew very popular decades ago with soft-
ware applications like the Game of Life. From the computing theory’s perspective,
it is a fundamental model of massive parallelism and was believed to offer ex-
tremely efficient solutions for hardware implementations. This paper overviews
scientific literature and presents existing implementations of cellular automata, ei-
ther in general form or dedicated to specific applications. The model is still con-
sidered to be very interesting and was proved to be efficient for applications like
modeling of complex phenomena and implementation of encryption systems and
randomizers. However, the hardware versions of cellular automata are still belong-
ing to the academic realm, as they did not reach the industry and are not available
as commercial products.

1 Introduction
Cellular automata offer a very elegant computing model: a (typically) homoge-

neous regular network of simple processing elements, also named cells, locally inter-
connected. It is derived from the model of natural systems consisting of many simple
parts that interact only locally and exhibit complex and self-organizing global behavior.

As digital system’s, cellular automata are networks of finite automata (finite state
machines). Therefore, the model seem to be very appropriate for hardware imple-
mentation as ASIC digital integrated circuits. This paper overviews some hardware
implementations of cellular automata reported in the scientific literature of the last two
decades, in order to estimate the development of this field, that was considered to be so
promising in the 1980’s [1].

The cells have a finite set of possible states, usually small. The computing task
is realized through the evolution of the global state, and this global evolution is the
consequence of local evolution laws. The time is discrete in such systems, and the local
evolution laws include in their definition the local interactions between cells, giving the
next state value for each cell depending on present state of its neighboring cells in the
lattice. Cellular automata model was introduced by J. von Neumann and S. Ulam in
the early 1950 as a general framework for modeling complex structures capable of self-
reproduction and self-repair functions. Von Neumann, the same scientist that proposed



Cellular Automata Hardware Implementations - an Overview 361

the classical, centralized and sequential computing model (nowadays denoted by his
name), introduced also this totally different computing model and structure, completely
decentralized and massively parallel.

The primary research of J. von Neumann in cellular automata was oriented towards
artificial self-reproduction of structures. He derived a computational universal cellu-
lar space with self-reproduction configurations. A cellular automata with 29 states per
cell realized this function by growing an arm that could construct a new configuration
similar to the initial one. Further, the model was used to emulate different computing
structures and to perform various computing tasks and was proved to be a universal
computer [2]. Different researchers continued to improve von Neumanns demonstra-
tion and model, simplifying the set of rules, reducing the number of states per cell or
introducing simpler ways to compute several tasks.

Another famous cellular automata model, probably the most famous cellular au-
tomata, is J. Conway’s Game of Life, introduced in the 1970’s but still fascinating
researchers with its possibilities [3]. This improperly called Game - because the player
simply watch the evolution of the system - models a population of living cells devel-
oping in a cellular space under very simple basic laws of evolution. In the original
version, the cells have only two states, therefore the model is much simpler than von
Neumann’s, but the global behavior is very vast and also was proved to be capable
of universal computation and self-reproduction. These two examples are enough to
sustain the idea that cellular automata had a great influence in the emergence and de-
velopment of the entire field of artificial life or a-life.

In a first period of development, cellular automata based models were proposed for
different computing tasks, such as parallel language recognition, modeling of biolog-
ical systems, image processing. Theoretical studies in the field of cellular automata
became significant only in the 1980’s, with Wolfram’s works [4]. Wolfram’s investi-
gated cellular automata as mathematical models for self-organizing statistical systems
and introduced a phenomenological classification of cellular automata, based on the
complexity of their global behavior.

In the VLSI era, cellular automata field has been consolidated, since cellular au-
tomata offer a parallel computing model almost perfectly adapted to the VLSI design.
Designers always look for simple, regular and modular logic circuit structure to real-
ize a complex function and cellular automata ideally meet all these requests. ASIC
implementations of cellular automata based pattern generators, cryptographic systems,
associative memories, image processing circuits etc. were proposed [5], [6].

Nowadays, the cellular automata community of researchers is still small, especially
when compared to the much greater interest raised by other nature-inspired models like
neural networks or genetic algorithms. However, good results and useful applications
are developed every year. Three major trends of development may be identified for the
future of cellular automata field [7]:

• fundamental research in complexity studies;

• application development, especially oriented towards ASIC or FPGA implemen-
tations, and parallel computing systems;

• modeling and simulation of complex natural or artificial systems.



362 M. Dascălu

2 Cellular Automata: Self-Organization and Parallelism
Self-organization is one of the modern scientific concepts, like complexity or chaos,

that try to cover a vast frame of phenomena and natural realities that are less under-
stood. It refers to the property of the natural systems to manifest a coherent evolution
and a certain order and organization even in the absence of something that impose this
order. Scientists suppose that the intimate microscopic processes, together with the
property of self-organization, lead to a spatial-temporal macroscopic order.

In the case of cellular automata, the self-organization is usually illustrated by the
patterns generated by a linear or two-dimensional lattice of cells that evolve according
to simple rules but generate exquisite patterns. The behavior generated by a simple,
regular structure of simple processing elements appear to be complex.

The cellular automata are defined by the interconnection network and the specificity
of the cell (number of states and local evolution rule). It is obvious that the parallelism
is the main feature of such a computing system and it is even more attractive as proven
to be able of universal computation. The problem is that there is no method that tells
us how to apply the model to perform a specific computing task.

This is the main dilemma of the massive parallelism: to decompose a complicate
task in one and only elementary function executed in parallel by the processing ele-
ments. For cellular automata, the processing elements are finite state machines (i.e.,
perform just simple functions). The problem of synthesis has no general solution and
is probably the reason that cellular automata are still used for just few computing tasks.
The implementation of the model in the general version is therefore not so interesting
as a computing system, but rather as an application development tool.

Only few prototypes of cellular automata machines or co-processors were devel-
oped so far and are not available as commercial products. Hence, the paradox of
cellular automata: they are essentially parallel, but mostly used in simulations. An
advantage of simulation is that it allows experiments with different parameters and lo-
cal rules, in order obtain an useful application of model a certain process. Speeding up
simulation is another direction of scientific research in the field of cellular automata.

3 Hardware for General Cellular Automata
The hardware version of cellular automata should consist of a network of finite state

machines with a predefined maximum number of states (related to the dimension of the
state register) and a programmable logic circuit, with number of inputs depending of
the interconnection topology. The neighborhood is the set of cells that are implied in
the computation of the next state.

A universal cellular automata chip should be able to:

– implement any local rule;

– implement inhomogeneous topologies having inhomogeneous neighborhoods and
inhomogeneous local rules;

– define various boundary conditions (the theoretical model is infinite).

The implementation of any local law implies the assumption that, sometimes, each
local law will be used or applied, or in other words, that all local rules have some
applications. The number of all existing local rules depends exponentially on two



Cellular Automata Hardware Implementations - an Overview 363

parameters: the number of state bits and the dimension of neighborhood. Are all these
laws useful for some applications? Obviously, not.

Two-dimensional rectangular network seem to be appropriate for hardware version,
since it may be easily transformed through topological transformations in any particular
version of interconnection: hexagonal, triangular, rectangular with 4 neighbors or 8
neighbors and also linear.

Theoretically, binary cellular automata offer a universal computing model. Any
computation that can be done with a multi-state cellular automata can certainly be
realized with binary automata, too [2], [4]. Also, binary cellular automata seem to
be feasible in hardware version. For accuracy, we have to mention that there is no
algorithm that can transform the multi-state automata in its binary correspondent. Most
applications developed for multi-state automata exploit their features to obtain elegant
computing algorithms.

However, there are enough applications were binary automata offer the most ap-
propriate implementation tool, like binary image processing or cryptography [1], [6].
A binary cellular automata chip can find its own utility for such applications.

General cellular automata chips were proposed in the scientific literature, but not
implemented so far in this version. The moment when these projects appeared was
followed by a fast development of the FPGA technology. Reconfigurable hardware
was preferred to the direct ASIC transposition of the model.

4 Programmable Cellular Automata Hardware in Re-
configurable Hardware

An interesting approach to cellular automata implementation on reconfigurable
hardware like FPGA circuits and boards combines the use of a transputer processor
with an early generation Xilinx product [8]. The transputer (T800) is programmed
in Occam language, that was specifically created for transputers and generates the re-
quired data for programming the reconfigurable device (Xilinx XC3090). The software
description of a particular cellular automata is compiled and transformed in specific
place and routing data for the XC3090 chip. As presented in [8] the board was actually
implemented and operational at the Balliol College, Oxford.

Fig. 1: The prototype board components of transputer-FPGA implementation [8],
page 6.

A general implementation of cellular automata should be adaptable to particular
local rules, and such implementations are called programmable cellular automata, as



364 M. Dascălu

opposed to particular implementations for a given local rule, that are much easier to
implement.

Recent solutions for general cellular automata implementation on FPGA use last
generation FPGAs, that include microprocessor cores and high speed data transfer. For
instance, a project successfully realized at the University of Porto (Portugal) use also
Xilinx products (Spartan 6 family) and the software microprocessor core provided by
Xilinx (micro Blaze) to implement a cellular automata programmable board [9]. The
system generates the FPGA configuration for a specific cellular automata implemen-
tation - the local rules and initial state are introduced in a Java application on the host
computer. It was tested for particular cases like Game of Life, for small size two-
dimensional cellular automata. According to the authors, for a 56x56 array of cells,
the Game of Life hardware implementation offers a speed-up of 168 as compared to
software simulation. Other applications verified by the authors are Greenberg-Hastings
and lattice gas automata [9]. The system architecture is presented in Figure 2 .

Fig. 2: The experimental board that generates FPGA implementations of cellular au-
tomata [9], page 53.

5 Cellular Automata Machines
Another approach for general cellular automata hardware is to use serial processing
of the cells, combined with pipelining techniques. In this approach, standard memory
modules are used to hold the cell contents (state). The local laws for cell’s state up-
dating can be realized as a look-up table or using other processing elements, such as
signal processors.

The serial architecture suggested above is the one applied in the cellular automata
machines developed so far: CAM and CEPRA. Both systems contain as a key com-
ponent a memory manager capable of providing the processing element with the input
very quickly. This memory manager needs to have internal shift registers to keep sev-
eral (depending on the neighborhood) rows of cells accessible without need to read the
cell memory multiple times.

Figure 3 illustrates the operating principle of such architecture. Cells states are
read sequentially from Cell Memory 1 into the shift register. Once the shift registered
are filled, the data from one cell and its neighbors is fed into the rule processor which
computes the value of the next state of the cell. This value is written into Cell Memory
2, while another cell is read from memory 1 and shifted into the shift register. Then the
next cell is ready to be processed. At the end of one sweep, Memory 1 and Memory 2



Cellular Automata Hardware Implementations - an Overview 365

are exchanged in the algorithm. Values are read from Memory 2, processed and written
in Memory 1. In this architecture the speed of processing is limited by the rate with
which cells can be read from and written to memory, and the rate at which they are
processed by the rule processor.

The CAM (Cellular Automata Machine) family of special purpose machines have
been developed by Toffoli, Margolus and co-workers at the Massachusetts Institute of
Technologys Information Mechanics Group. The concept was launched in 1987 [10]
and further developed with different models. The CAM-6 was produced commercially
(as a PC board) and CAM-8, the latest version [11], has been produced in small series
in 1996.

Fig. 3: Block diagram of special cellular automata hardware simulators, such as CAM-
6 and CEPRA.

Fig. 4: Block diagram of the CEPRA - 8 [13]

The CAM architecture match most closely the concept of lattice gas cellular au-
tomata [11], where the same sequence of propagation of bits (particles) and local in-
teraction (collision) is used. But the architecture can also efficiently simulate other
cellular automata, the most severe restriction being the size of the look-up table of 16
bits. However, many CA functions can be simulated with a short sequence of 16 bit
functions. For this purpose it is possible to change the look-up table between two up-
dating steps without time delay. The machine can also be configured in an arbitrary
way as a d-dimensional hyper-torus, with a maximum of 23 dimensions, and where all
dimensions beyond 3 must fit into one module.

MIT’s CAM project was followed by the Brain Machine project, with the CAM-
Brain Machine (CBM), a complex machine that combines the model of cellular au-
tomata with neural networks [12]. While CAM-8 was meant as a cellular automata
accelerator, CBM has been constructed for simulation of neural nets, although it has a
CA architecture and claimed to be the hardware for the first artificial intellect.

CEPRA stands for Cellular Processing Architectures. Several prototypes were re-
alized in the 1990’s at Technical University of Darmstadt, Germany. Most of those



366 M. Dascălu

machines are based on programmable technology and were implemented with Al-
tera FPGAs, but also models with DSP were developed. The authors (see for in-
stance, [13], [14]) proved that the FPGA implementation of the CEPRA machine is
much more effective than the simulation version of cellular automata. The main dif-
ference between CEPRA and the CAM machines is the structure of the rule processor
that is here made of 8 FPGAs.

The block diagram of CEPRA- 8L is given in figure 4. Cell states are moved
through the stages of the compute-window. Thus the 8 cell processors have direct
access to the states of their neighbors. The machine computes 20-30 generations per
second.

The CEPRA project was continued in the first decade of this century, with most sig-
nificant new development, the CEPTRA - 1X, a configurable coprocessor for speeding
the computation needed in cellular automata applications [15]. A special programming
language (CDL) was developed for the use this coprocessor, that allow the description
of complex cellular automata.

6 Application Specific Hardware with Cellular Automata

Specific implementations are reported in the scientific literature as hardware so-
lutions dedicated to application (not as general computing machines). Most of these
examples are also implemented in reconfigurable hardware as FPGAs.

Cellular automata applications in hardware versions most encountered in the sci-
entific literature are applications that include randomizers (hence, cellular automata
are used as generators and the synthesis problem is eluded). Such applications are
randomizers themselves, Built-In Self-Test circuitry, encryption systems. Variations of
the model were explored in order to obtain better performances of the cellular automata
randomizers, like a global feed-back loop [22], [23].

Chauduri et al [5] proposed general schemes for an associative memory and several
other interesting applications, with no details of practical implementations. In [6], the
authors propose electronic digital schemes for image processing, BIST signal genera-
tion and encryption.

Implementation for particular local rules are also available, starting with the classic
Game of Life [1], lattice gas cellular automata [10], stochastic Greenberg-Hastings cel-
lular automata [16] or reaction-diffusion cellular automata models [17]. The encryption
applications of cellular automata often require versatility, therefore implementations
must afford changing of local rules (see [18] for an example).

All these recent applications are reported in scientific literature as implemented in
FPGA. Even projects intended for ASIC implementation, like the RFID security block
in [19] was in fact emulated on a FPGA experimental board.

However, FPGAs are not the only hardware solution for cellular automata imple-
mentation. Several other implementations were reported so far in the scientific lit-
erature. Some new developments include systolic array implementation of cellular
automata model [20].

Taking into consideration the specificity of the model, particular developments of
exotic models should not surprise. An ”artificial insect eye” is presented in [6]. In
Hong Kong, researchers effectively constructed a cellular automata to simulate adap-
tive systems in the field of urban development (architecture) in order to grow models
of future possible architectural developments [21]. 48 cellular automata boards (figure



Cellular Automata Hardware Implementations - an Overview 367

5, a) run scenarios for high density facade development in a shelve-style construction
(figure 5, b).

Fig. 5: The cellular automata boards (a) and the system (b) used to simulate architec-
tural evolution in Hong Kong [21].

7 Conclusions
Although cellular automata model is one of the fundamental models of massive

parallelism and was proven from the very beginning as able of universal computation,
a general solution for its hardware implementation was not yet found. Hardware im-
plementations available so far are either serial accelerators or particular programmable
cellular automata configuration generators, bun not the ultimate parallel computers as
researchers expected 30 years ago. Probably because of the development of the re-
configurable hardware, efforts in the direction of cellular automata ASIC general im-
plementations seemed to be abandoned, as FPGA offer an excellent environment for
emulation of cellular automata. Some famous implementations of cellular automata
are overviewed in this paper, together with less famous but creative solutions like the
combination of FPGAs with transputer.

References
[1] DASCĂLU M., Automatele celulare o solutie pentru reducerea complexitatii VLSI, Edi-

tura PRINTECH, 154 pagini, 1998.

[2] GARZON M., Models of Massive Parallelism, Springer-Verlag, 2012 (first edition 1995).

[3] CONWAY J., The Game of Life, Scientific American magazine, October 1970, pp 120-123.

[4] WOLFRAM S., Statistical Properties of Cellular Automata, Rev. Mod. Phys., vol 58, pp.
601-644, 1983.

[5] CHAUDHURI P., CHOWDHURY D., NANDI S., CHATTOPADHYAY S.: Additive Cel-
lular Automata: Theory and Application [Volume 1], IEEE Computer Society Press, 1997.

[6] DASCĂLU M., FRANŢI E.: Automatele celulare. Modelare si Aplicatii, Editura Tehnica,
Bucuresti, 2009.

[7] ] ACRI 2014, Cellular Automata: 11th International Conference on Cellular Automata for
Research and Industry, edited by Jaroslaw Was, Georgios Ch. Sirakoulis, Stefania Bandini,
Springer-Verlag, 2014.

[8] THOMAS P., Hardware Compilation of Cellular Automata Algorithms, Balliol College,
Oxford, scientific report, 1993, available on Internet on CiteSeerX.



368 M. Dascălu

[9] LIMA A. C., FERREIRA J. C., Automatic Generation of Cellular Automata on FPGA,
ISBN: 978-972-8822-27-9, REC 2013, pages 51-58.

[10] TOFFOLI T., MARGOLUS N.: Cellular automata machines: a new environment for mod-
eling. MIT Press, Cambridge, MA, USA, 1987.

[11] MARGOLUS N.: CAM-8 A computer architecture based on cellular automata, 1995, MIT
Laboratory For Computer Science, available at https://arxiv.org/abs/comp-gas/9509001.

[12] DE GARIS H., KORKIN M., The CAM-Brain Machine (CBM): an FPGA-based hardware
tool that evolves a 1000 neuron-net circuit module in seconds and updates a 75 million
neuron artificial brain for real-time robot control, Neurocomputing, Volume 42, Issues 14,
January 2002, Pages 3568.

[13] HOFFMANN R., VOLKMANN K., SOBOLEWSKI M., The cellular processing machine
CEPRA - 8L. Mathematical Research, 8L: 179-188, 1994.

[14] ] HALBACH M., HOFFMANN R, RÖDER P., FPGA Implementation of Cellular Au-
tomata Compared to Software Implementation, ARCS 2004 - Organic and Pervasive Com-
puting, Workshops Proceedings, March 26, 2004, Augsburg, Germany.

[15] HOCHBERGER C., HOFFMANN R, VOLKMANN K., WALDSCHMIDT S., The cellu-
lar processor architecture CEPRA - 1X and its configuration by CDL, in J. Rolim et. al
(editors): IPDPS 2000 Workshops, LNCS 1800, pp 898-905, 2000.

[16] ] VLASSOPOULOS N., FATES N., BERRY H., GIRAU B.: An FPGA design for the
stochastic Greenberg-Hastings cellular automata. In 2010 International Conference on
High Performance Computing and Simulation (HPCS), pages 565574, 2010.

[17] ISHIMURA K., KOMURO K., SCHMID A., ASAI T., MOTOMURA M., FPGA im-
plementation of hardware-oriented reaction-diffusion cellular automata models, Nonlin-
ear Theory and Its Applications, IEICE, vol. 6, no. 2, pp. 252262, IEICE 2015 DOI:
10.1587/nolta.6.252, 2015.

[18] FRANŢI E., DASCĂLU M., More security and autonomy for users:encryption system
with evolutive key, in ”Data, Text and Web Mining and their Business Applications”, WIT
Press, pag. 335-344, ISBN 978-1-84564-081-1, ISSN 1746-4463, Cambridge Printing,
Great Britain, 2007.

[19] BAG J., SARKAR S., Development and VLSI implementation of a data security scheme
for RFID system using programmable cellular automata, International Journal of Radio
Frequency Identification Technology and Applications, Jan 2013, Vol. 4, Issue 2, pp. 197-
211.

[20] YARAHMADI A., SETAYESHI S., MOAREFI N., Hardware Implementation of Cellular
Automata on Systolic Array, Computer Modeling and Simulation, International Confer-
ence on, vol. 00, no., pp. 426-429, 2011, doi:10.1109/UKSIM.2011.87.

[21] CHRISTIANE H., FISCHER T. Using Hardware Cellular Automata to Simulate Use in
Adaptive Architecture. In Proceedings of the 9th International Conference on Computer-
Aided Architectural Design Research in Asia, 815-828. CAADRIA. Seoul, Korea: In-
stitute of Millennium Environmental Design and Research, Yonsei University and The
Korean Housing Association, 2004.

[22] ŞTEFAN G., Looking for the lost noise, in Semiconductor Conference CAS98 Proceed-
ings, vol. 2, IEEE, 1998, pp. 579582.

[23] GHEOLBĂNOIU A., MOCANU D., HOBINCU R., PETRICĂ L., Cellular Automaton
pRNG with a Global Loop for Non-Uniform Rule Control, Advances in Information Sci-
ence and Applications - Volume II, pp. 415-420, 2014.


