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1. Introduction

The most used classes of formal models in the formal language theory are grammars
and automata. Grammars work as generative devices, while automata work as accepting
devices. Given a grammar, it uses its rules to derive the string belonging to the language it
describes from some initial string. Given an automaton, it uses its rules to decide which
actions should be performed, based on its state, first symbol of its input string, and
possibly on other additional information. Every string that drives the given automaton
to its accepting configuration belongs to the language characterized by that automaton.

Formal language theory has introduced several language-defining models, state gram-
mars and deep pushdown automata (see [1], [2]), based upon a combination of grammars
and automata. To give a more general example, rewriting systems underlie both gram-
mars and automata, so they generalize both. Furthermore, a unified approach to the way
both grammars and automata define languages were studied in [3] and [4].

In 2006, Meduna, Křivka, and Schönecker introduced a new modification of rewriting
systems, called #-rewriting systems (see [5]). While ordinary rewriting systems rewrite
just one substring to another during one computation step, #-rewriting systems rewrite
in fact two substrings, where the first substring is always one symbol long and acts like
state. Moreover, the success of one computation step in #-rewriting systems depends
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also on the number of occurrences of # in their sentential forms. If k is an upper bound
limit of the number of occurrences of #, #-rewriting systems are said to be of index k.
Such a restriction has an important influence to their descriptive power. While ordinary
rewriting systems characterize the Chomsky hierarchy of languages, the power of #-
rewriting systems of index k coincide with the power of programmed grammars of the
same index (see [5]).

In this paper, we extend #-rewriting systems with additional storage that can con-
tain both terminals and nonterminals and we call them k#$-rewriting systems. More
precisely, every configuration consists of three parts: (1) the current state, (2) a string of
terminals (including #), and, newly, (3) a pushdown string of terminals and nonterminals
(excluding #). Below, in the string representation of such configuration, part (2) and
(3) are separated by the symbol $.

From a more practical viewpoint, it is noteworthy that this string representation is
applicable in theoretically oriented computational linguistics related to the fundamental
study given in [6], discussing pumping lemmas for the control language hierarchy. As a
matter of fact, it can be used in any practically limited scattered information processing,
such as bioinformatics, including state grammar and deep pushdown automata applied
to biological sequences of nucleic acids (see [7]).

After giving some preliminaries in Section 2. and introducing the formal definition
with an example in Section 3., in Section 4., we show that for some positive integer, k,
k#$-rewriting systems and k-limited state grammars have the same expressive power.
Finally, the concluding section outlines an open problem for further investigation.

2. Preliminaries

This paper assumes that the reader is familiar with the fundamental notions of formal
language theory (see [8, 9]). For a set X, card(X) denotes its cardinality and 2X denotes
its power set. By N, we denote a set of all positive integers. Let Σ be an alphabet. Then,
Σ∗ represents the free monoid generated by Σ under the operation of concatenation with
ε as its identity element. Set Σ+ = Σ∗ − {ε}. For w ∈ Σ∗, |w| denotes the length
of w, alph(w) = {x | w = uxv, x ∈ Σ, u, v ∈ Σ∗} denotes the minimal subset of Σ
such that w ∈ alph(w)∗. For a ∈ Σ, occur(w, a) denotes the number of occurrences of
a in w; mathematically, occur(w, a) = card({u | w = uav, u, v ∈ Σ∗}). For W ⊆ Σ,
occur(w,W ) =

∑
a∈W occur(w, a). For k ≥ 0, if w can be expressed as w = xy such that

k = |x| and x, y ∈ Σ∗, then prefix(w, k) = x; otherwise, prefix(w, k) = w.
Let A be a set and let σ be a (binary) relation over A. The k-fold product of σ,

where k ≥ 0, the transitive closure of σ, and the reflexive and transitive closure of σ are
denoted as σk, σ+, and σ∗, respectively. Instead of (x, y) ∈ σ, we write x σ y.

By p : e, we express that e has p as its label, i.e. p is a unique symbol that is associated
with e and that can be used as an alternative name of e. By p : e ∈ D, we express that
p : e and e ∈ D.

A context-free grammar is a quadruple, G = (V, T, P, S), where V is a total alphabet,
T ⊂ V is an alphabet of terminals, P ⊆ (V − T ) × V ∗ is a finite set of rules, and
S ∈ (V − T ) is the start symbol. Instead of (A, x) ∈ P , we write A → x ∈ P . Let ⇒
be a relation of direct derivation on V ∗ defined as follows: uAv ⇒ uxv iff A → x ∈ P ,
where A ∈ (V − T ) and u, x, v ∈ V ∗. By uAv ⇒ uxv [A → x], we express that uAv



280 J. Kucera et al.

directly derives uxv according to A → x. By ⇒G, we express that a relation of direct
derivation, ⇒, is associated with a grammar G. The language generated by G, L(G),
is defined as L(G) = {w | S ⇒∗ w,w ∈ T ∗}. The family of context-free languages is
denoted as L (CF).

Let n ≥ 1 and Σn = {a1, b1, a2, b2, . . . , an, bn}. The Dyck language Dn over Σn is
generated by the grammar

({S} ∪ Σn,Σn, {S → SS, S → ε, S → a1Sb1, . . . , S → anSbn}, S).

Let G be a grammar of arbitrary type, and let V , T , and S be its total alphabet,
terminal alphabet, and start symbol, respectively. For a derivation D : w1 ⇒ w2 ⇒ . . .⇒
wr, S = w1, wr ∈ T ∗, according to G, we set Ind(D,G) = max{occur(wi, V −T ) | 1 ≤ i ≤
r}, and for w ∈ T ∗, we define Ind(w,G) = min{Ind(D,G) | D is a derivation for w in G}.
The index of grammar G (see page 151 in [10]) is defined as Ind(G) = sup{Ind(w,G) |
w ∈ L(G)}. For a language L in the family L (X) of languages generated by grammars
of some type X, we define IndX(L) = inf{Ind(G) | L(G) = L,G is of type X}. For a
family L (X), we set Ln(X) = {L | L ∈ L (X) and IndX(L) ≤ n}, n ≥ 1.

A state grammar (see [1]) is a sixtuple G = (V, T,K, P, S, s), where V is a total
alphabet, T ⊂ V is an alphabet of terminals, K is a finite set of states, V ∩ K = ∅,
P ⊆ (V − T )×K × V ∗ ×K is a finite set of rules, S ∈ (V − T ) is the start symbol, and
s ∈ K is the start state. Instead of (A, p, x, q) ∈ P , we write (A, p) → (x, q) ∈ P . Let
⇒ be a relation of direct derivation on V ∗ ×K defined as follows: (uAv, p) ⇒ (uxv, q)
iff (A, p)→ (x, q) ∈ P and for every (B, p)→ (y, t) ∈ P , B /∈ alph(u), where p, q, t ∈ K,
A,B ∈ (V − T ), and u, v, x, y ∈ V ∗. For some k ≥ 1 satisfying occur(uA, V − T ) ≤ k,
⇒ is said to be k-limited, denoted as k⇒. By (uAv, p) ⇒ (uxv, q) [(A, p) → (x, q)], we
express that (uAv, p) directly derives (uxv, q) according to (A, p)→ (x, q). Similarly for

k⇒. The language generated by G, L(G), is defined as L(G) = {w | (S, s)⇒∗ (w, q), q ∈
K,w ∈ T ∗}. Let k ≥ 1. The language generated by G in k-limited way, L(G, k), is
defined as L(G, k) = {w | (S, s) k⇒∗ (w, q), q ∈ K,w ∈ T ∗}. The families of languages
generated by state grammars and by state grammars in k-limited way are denoted as
L (ST) and L (ST, k), respectively.

A #-rewriting system (see [5]) is a quadruple M = (Q,Σ, s, R), where Q is a finite
set of states, Σ is an alphabet containing special symbol # called bounder, Q ∩ Σ = ∅,
s ∈ Q is the start state, and R ⊆ Q×N×{#}×Q×Σ∗ is a finite set of rules. Instead of
(p, n,#, q, x) ∈ R, we write p n# → qx. Let ⇒ be a relation of direct rewriting step on
QΣ∗ defined as follows: pu#v ⇒ quxv iff p n#→ qx ∈ R and occur(u,#) = n−1, where
p, q ∈ Q, u, v, x ∈ Σ∗, and n ∈ N. By pu#v ⇒ quxv [p n# → qx], we express that pu#v
directly rewrites quxv according to p n#→ qx. The language generated by M , L(M), is
defined as L(M) = {w | s# ⇒∗ qw, q ∈ Q,w ∈ (Σ− {#})∗}. Let k ∈ N. A #-rewriting
system M is said to be of index k iff s# ⇒∗ qy implies occur(y,#) ≤ k, where q ∈ Q
and y ∈ Σ∗. Let k ∈ N. The family of languages generated by #-rewriting systems and
by #-rewriting systems of index k are denoted as L (#RS) and Lk(#RS), respectively.

3. Definitions

We are now ready to define k#$-rewriting systems.
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Definition 3..1. Let k ∈ N. A k#$-rewriting system is a quintuple

M = (Q,V,Σ, s, R),

where Q is a finite set of states, V is a total alphabet, V ∩ Q = ∅, Σ is an alphabet
containing # and $ called bounders, Σ ⊆ V , s ∈ Q is a start state, and

R ⊆ (Q× N× {#} ×Q× (Σ− {$})∗)
∪ (Q× {#} × {$} ×Q× {$} × (V − {#, $})∗)
∪ (Q× {$} × (V − Σ)×Q× {#} × {$})

is a finite set of rules.
Instead of (p, n,#, q, x) ∈ R, (p,#, $, q, $, y) ∈ R, and (p, $, A, q,#, $) ∈ R, we write

p n#→ qx ∈ R, p#$→ q$y ∈ R, and p$A→ q#$ ∈ R, respectively.
Let Ξ ⊆ Q(Σ − {$})∗{$}(V − {#, $})∗ be a set of all configurations of M such that

χ ∈ Ξ iff occur(χ,#) ≤ k.
Let ⇒ be a relation of direct rewriting step on Ξ defined as follows:

• pu#v$α ⇒ quxv$α iff p n# → qx ∈ R, occur(u,#) = n − 1, p, q ∈ Q, u, v, x ∈
(Σ− {$})∗, α ∈ (V − {#, $})∗, and n ∈ N;

• pu#$α ⇒ qu$xα iff p#$ → q$x ∈ R, p, q ∈ Q, u ∈ (Σ − {$})∗, and x, α ∈
(V − {#, $})∗;

• pu$Aα ⇒ qu#$α iff p$A → q#$ ∈ R, p, q ∈ Q, u ∈ (Σ − {$})∗, A ∈ V − Σ, and
α ∈ (V − {#, $})∗;

• pux$α⇒ pu$xα iff p ∈ Q, u ∈ (Σ−{$})∗, x ∈ (Σ−{#, $})∗, and α ∈ (V −{#, $})∗;

• pu$xα⇒ pux$α iff p ∈ Q, u ∈ (Σ−{$})∗, x ∈ (Σ−{#, $})∗, and α ∈ (V −{#, $})∗.
By x⇒ y [r], we express that x directly rewrites y according to r.

The language generated by M , L(M), is defined as

L(M) = {w | s#$⇒∗ qw$, q ∈ Q,w ∈ (Σ− {#, $})∗}.

The family of languages generated by k#$-rewriting systems is denoted as Lk(#$RS).

The following example demonstrates a generative capacity of k#$-rewriting systems.

Example 3..2. Let M = (Q,V,Σ, s, R) be a 2#$-rewriting system, where

Q = {s, p, p′, p(1), p(2), p(X), p(Y ), q, f, f (A), f (B)}
V = {A,B,X, a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2,#, $}
Σ = {a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2,#, $}

and R contains rules

1: s 1#→ p## 9: p(Y )
1#→ q

2: p 1#→ p′a#b 10: q 1#→ f
3: p′ 2#→ p(1)c# 11: f$A→ f (A)#$
4: p′ 2#→ p(2)d# 12: f$B → f (B)#$
5: p(1)#$→ p(X)$X[1A]1 13: f (A)

1#→ f (A)0#1
6: p(2)#$→ p(X)$X[2B]2 14: f (B)

1#→ f (B)0̄#1̄
7 : p(X)$X → p#$ 15: f (A)

1#→ f01
8: p(X)$X → p(Y )#$ 16: f (B)

1#→ f 0̄1̄
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First, M generates two # bounders. Second, M uses rules 2 through 7 to generate the
following structure

am#bmz1z2 · · · zm#$φ(zmzm−1 · · · z1)

where zi ∈ {c, d}, 1 ≤ i ≤ m, m ≥ 1 and φ is a homomorphism from {c, d}∗ to
{A,B, [1, [2, ]1, ]2}∗ such that φ(c) = [1A]1 and φ(d) = [2B]2. Finally, M uses rules
8 through 16 to finish the rewriting. Thus, the language generated by M is

L(M) =

{
w

∣∣∣∣ w = anbnz1z2 . . . znh(zn, i1)h(zn−1, i2) . . . h(z1, in),
zi ∈ {c, d}, 1 ≤ i ≤ n, ij ≥ 1, 1 ≤ j ≤ n, n ≥ 1

}
where h is a mapping from {c, d}×N to {0, 1, 0̄, 1̄, [1, [2, ]1, ]2}∗ such that h(c, i) = [10i1i]1
and h(d, i) = [20̄i1̄i]2.

For instance, M generates aabbdc[10011]1[20̄1̄]2 in the following way

s#$ ⇒ p##$ [1]
⇒ p′a#b#$ [2]
⇒ p(2)a#bd#$ [4]
⇒ p(X)a#bd$X[2B]2 [6]
⇒ pa#bd#$[2B]2 [7]
⇒ p′aa#bbd#$[2B]2 [2]
⇒ p(1)aa#bbdc#$[2B]2 [3]
⇒ p(X)aa#bbdc$X[1A]1[2B]2 [5]
⇒ p(Y )aa#bbdc#$[1A]1[2B]2 [8]
⇒ qaabbdc#$[1A]1[2B]2 [9]
⇒ faabbdc$[1A]1[2B]2 [10]
⇒ faabbdc[1$A]1[2B]2
⇒ f (A)aabbdc[1#$]1[2B]2 [11]
⇒ f (A)aabbdc[10#1$]1[2B]2 [13]
⇒ faabbdc[10011$]1[2B]2 [15]
⇒ faabbdc[10011]1[2$B]2
⇒ f (B)aabbdc[10011]1[2#$]2 [12]
⇒ faabbdc[10011]1[20̄1̄$]2 [16]
⇒ faabbdc[10011]1[20̄1̄]2$

4. Results

First, we prove the identity of L (ST, k) and Lk(#$RS) for every k ≥ 1.

Lemma 4..1. Let k ≥ 1. Then, L (ST, k) ⊆ Lk(#$RS).

Proof. Let G = (V, T,K, P, S, s) be a state grammar. Without any loss on generality,
suppose that V ∩ {#, $} = ∅. Now, we construct from G a k#$-rewriting system

M = (Q,V ′,Σ, s′, R)
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such that L(G, k) = L(M). First, we set

Q =
⋃k
i=0{〈q; l;u〉 | q ∈ K,u ∈ (V − T )i, 0 ≤ l ≤ k}

V ′ = V ∪ {#, $}
Σ = T ∪ {#, $}
s′ = 〈s; 0;S〉

In Q, each state records three pieces of information—(1) the current state of G, (2)
auxiliary substate of the simulation (0 is for regular state, and 1 through k are for
auxiliary substates), and (3) the first k nonterminal symbols from the current sentential
form of G. The positions of these k symbols correspond to #s in the simulation of G by
M .

Next, we construct R. Let

rules(p, u) =

{
r

∣∣∣∣ r : (B, p)→ (x, q) ∈ P,B ∈ ((V − T ) ∩ alph(u)),
p, q ∈ K,x ∈ V +, u ∈ V ∗

}
and let g and h be two homomorphisms from V ∗ to (Σ−{$})∗ and from V ∗ to (V ′−Σ)∗,
respectively, defined as

g(x) =

{
# for every x ∈ (V − T )
x for every x ∈ T

h(x) =

{
x for every x ∈ (V − T )
ε for every x ∈ T

Initially, set R = ∅. For every rule (A, p)→ (x, q) ∈ P and for every state 〈p; 0;uAv〉 ∈ Q
such that rules(p, u) = ∅ perform the following steps:

(A) If k − |uv| ≥ |h(x)|, then add 〈p; 0;uAv〉 |uA|#→ 〈q; 0;uh(x)v〉g(x) to R.

(B) If k − |uv| < |h(x)|, then express v as v = Xm−1Xm−2 · · ·X0, where Xi ∈ (V ′ −Σ),
0 ≤ i ≤ m− 1, m = |v|, and

(i) for every i such that 0 ≤ i ≤ m− 1, add 〈p; i;uAv〉#$→ 〈p; i+ 1;uAv〉$Xi to
R;

(ii) add 〈p;m;uAv〉#$→ 〈q; 0;u〉$x to R.

Finally, for every state 〈p; 0;u〉 ∈ Q such that |u| ≤ k − 1 and for every B ∈ (V ′ − Σ)
add rule

〈p; 0;u〉$B → 〈p; 0;uB〉#$

to R. The construction of M is completed.
Due to the lack of space, we leave the formal proof that L(G, k) = L(M), which is

rather technical, to the kind reader. Both, L(G, k) ⊆ L(M) and L(M) ⊆ L(G, k) can be
proved by induction on the number of derivation or rewriting steps, respectively.

Lemma 4..2. Let k ≥ 1. Then, Lk(#$RS) ⊆ L (ST, k).
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Proof. Let M = (Q,V,Σ, s, R) be a k#$-rewriting system. Without any loss on gener-
ality, suppose that ¿ /∈ V and #i /∈ V , for all 1 ≤ i ≤ k. From M , we construct a state
grammar

G = (V ′, T,K, P,#1, s
′)

such that L(M) = L(G, k). First, we set

V ′ = (V − {#, $}) ∪ {#i | 1 ≤ i ≤ k}
T = Σ− {#, $}
K = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k} ∪ {〈p; i; r〉 | p ∈ Q, 0 ≤ i ≤ k, r ∈ R}
∪ {〈p; i; Jr, jK〉 | p ∈ Q, r ∈ R, 0 ≤ i ≤ k, 1 ≤ j ≤ k}
∪ {〈p; i; Jr,XK〉 | p ∈ Q, r ∈ R,X ∈ (V − Σ) ∪ {¿}, 0 ≤ i ≤ k}
∪ {qfail}

s′ = 〈s; 1〉

In K, each state records the current state of M and the number of #s in the current
configuration of M . Sometimes, it also contains the simulated rule, r, and additionally
with information either about the leftmost non-# nonterminal symbol, X, or simulation
progress, j. Note that X = ¿ if the simulation of a rule from R of the form r : p$A→ q#$
has started. In addition, K contains a special state qfail that brings G to a configuration
that rules out the next derivation step in G, which unsuccessfully stops the simulation
of M .

Let τ be a mapping from (Σ−{$})∗×{1, 2, . . . , k} to (T ∪{#i | 1 ≤ i ≤ k})∗ defined
recursively as follows

• τ(ε, i) = ε, for every 1 ≤ i ≤ k

• τ(ax, i) = aτ(x, i), for every a ∈ (Σ− {#, $}), x ∈ (Σ− {$})∗, and 1 ≤ i ≤ k

• τ(#x, i) = #iτ(x, i+ 1), for every x ∈ (Σ− {$})∗ and 1 ≤ i ≤ k − 1

We are now ready to construct P . Initially, set P = ∅. For every state 〈p;κ〉 ∈ K and
for every rule r : p n# → qx ∈ R such that n ≤ κ and κ − 1 + occur(x,#) ≤ k perform
the following steps:

(A) If occur(x,#) = 0 and κ− n = 0, then add

(#1, 〈p;κ〉) → (#1, 〈p;κ; r〉)
(#κ, 〈p;κ; r〉) → (x, 〈q;κ− 1〉)

to P .

(B) If occur(x,#) = 0 and κ− n ≥ 1, then

• add (#1, 〈p;κ〉)→ (#1, 〈p;κ; r〉) to P ;

• add (#n, 〈p;κ; r〉)→ (x, 〈q;κ− 1; Jr, 1K〉) to P ;

• for every 1 ≤ i ≤ κ− n− 1, add

(#n+i, 〈q;κ− 1; Jr, iK〉)→ (#n+i−1, 〈q;κ− 1; Jr, i+ 1K〉)

to P ;
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• add (#κ, 〈q;κ− 1; Jr, κ− nK〉)→ (#κ−1, 〈q;κ− 1〉) to P .

(C) If occur(x,#) = 1, then add

(#1, 〈p;κ〉) → (#1, 〈p;κ; r〉)
(#n, 〈p;κ; r〉) → (τ(x, n), 〈q;κ〉)

to P .

(D) If occur(x,#) ≥ 2, then

• add (#1, 〈p;κ〉)→ (#1, 〈p;κ; r〉) to P ;

• add (#n, 〈p;κ; r〉)→ (#n, 〈p;κ; Jr, 1K〉) to P ;

• for every 0 ≤ i ≤ κ− n− 1, add

(#κ−i, 〈p;κ; Jr, i+ 1K〉)→ (#κ+η−i, 〈p;κ; Jr, i+ 2K〉)

to P , where η = occur(x,#)− 1;

• add (#n, 〈p;κ; Jr, κ−n+1K〉)→ (τ(x, n), 〈q;κ+η〉) to P , where η = occur(x,#)−
1.

Next, for every state 〈p;κ〉 ∈ K such that κ ≥ 1 and for every rule r : p#$→ q$x ∈ R,
add

(#1, 〈p;κ〉) → (#1, 〈p;κ; r〉)
(#κ, 〈p;κ; r〉) → (x, 〈q;κ− 1〉)

to P .
Finally, for every state 〈p;κ〉 ∈ K such that κ ≤ k − 1 and for every rule r : p$A →

q#$ ∈ R, add

• (A, 〈p;κ〉)→ (A, 〈p;κ; r〉) if κ = 0

• (#1, 〈p;κ〉)→ (#1, 〈p;κ; r〉) if κ ≥ 1

• (A, 〈p;κ; r〉)→ (A, 〈p;κ; Jr, ¿K〉)

• (X, 〈p;κ; Jr, ¿K〉)→ (X, 〈p;κ; Jr,XK〉), for all X ∈ (V − Σ)

• (Y, 〈p;κ; Jr, Y K〉)→ (Y, qfalse), for all Y ∈ (V − Σ), where Y 6= A

• (A, 〈p;κ; Jr,AK〉)→ (#κ+1, 〈q;κ+ 1〉)

to P . Now, the construction of G is completed.
As in the proof of Lemma 4..1, the formal proof of Lemma 4..2 has a similar structure

and its technical details are left out.

Corollary 4..3. Let k ≥ 1. Then, Lk(#$RS) = L (ST, k).

Proof. It directly follows from Lemma 4..1 and Lemma 4..2.

Next, we show that Lk(#RS) is properly included in Lk(#$RS) for every k ≥ 1.
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Theorem 4..4. For every k ≥ 1. Then, Lk(#RS) ⊂ Lk(#$RS).

Proof. The inclusion Lk(#RS) ⊆ Lk(#$RS) follows directly from the definitions of #-
rewriting system of index k and k#$-rewriting system. It remains to find a language
from Lk(#$RS) that is not contained in Lk(#RS).

For k = 1, such a language is D2. As L1(#$RS) = L (CF) (by [1] and Corollary
4..3), D2 ∈ L1(#$RS), but D2 /∈ L1(#RS) (see page 169 in [10]).

For k ≥ 2, let Σk = {a1, a2, . . . , a4k−2} be an alphabet. Define a language Lk over
Σk as

Lk = {ai1ai2 . . . ai4k−2 | i ≥ 1}.

By Theorem 4 in [1], Lk ∈ L (ST, k) and since Lk(#$RS) = L (ST, k), Lk ∈ Lk(#$RS)
as well.

It is easy to see that matrix grammars of finite index k generates the same language
family as Lk(#RS) (see [5] and Theorem 3.1.2 on page 155 in [10]). By an application
of pumping lemma for matrix grammars of finite index (see Lemma 3.1.6 on page 159 in
[10]), we can prove that Lk /∈ Lk(#RS). Assume that Lk ∈ Lk(#RS). Therefore, there
exists z ∈ Lk such that

z = u1v1w1x1u2v2w2x2 . . . ulvlwlxlul+1

with l ≤ k, |v1x1v2x2 . . . vlxl| > 0, and

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 ∈ Lk

for every i ≥ 1. Now, consider the following cases:

• There exists y ∈ {v1, x1, v2, x2, . . . , vl, xl} such that card(alph(y)) ≥ 2. In this case,
there exists i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.

• All v1, x1, v2, x2, . . . , vl, xl are strings over one-letter alphabet. As for k ≥ 2 it is
always true that 4k − 2 > 2k, there will be always symbols from alph(z) that are
not contained in alph(v1x1v2x2 . . . vlxl). Hence there must exist i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.

Such z ∈ Lk does not exist and therefore Lk /∈ Lk(#RS) for every k ≥ 2.

The relationship between infinite hierarchies of #-rewriting systems of finite index
and k#$-rewriting systems is summed in Figure 1.

5. Conclusion

In the future, we plan to investigate these three open problem areas.

(1) Since we have a new characterization of L (ST, k), for some k ≥ 1, we will study the
relationship between k#$-rewriting systems and generalized #-rewriting systems
(studied in Sections 4.1.4 and 5.1.3 of [11]).
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(2) Considering [12], we intend to discuss the subject of this paper in terms of picture
languages or 2D languages.

(3) Finally, we want to relate this paper to the study given in [13], in which multi-
head finite automata are capable of simulating the tape portion behind $ in k#$-
rewriting systems.

L1(#$RS) ⊂ L2(#$RS) ⊂ · · · ⊂ Lk(#$RS)
∪ ∪ ∪

L1(#RS) ⊂ L2(#RS) ⊂ · · · ⊂ Lk(#RS)

Fig. 1. The relations between #-rewriting systems with finite index and #$-rewriting systems.
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