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Abstract. Membrane computing is a branch of natural computing, which abstracts from
the architecture and the functioning of living cells. The models investigated in membrane
computing are distributed and parallel computing devices, which are generically called P
systems. Three main families have been considered until now: cell-like P systems, tissue-
like P systems and neural-like P systems. In this work, we first present the definitions of
tissue-like P systems and several variants of these systems, then some results about Turing
universality and computational efficiency are recalled. Finally, a computational complexity
theory within the framework of tissue-like P systems is introduced, polynomial complexity
classes associated with several variants of tissue-like P systems are defined and some relevant
results are presented. Different borderlines between efficiency and non-efficiency on the basis
of the length of communication rules are presented.

Key-words: Bio-inspired computing, Membrane computing, Tissue P system, Univer-
sality, Computational complexity

1. Introduction
The research area of membrane computing was motivated by the structure and functioning of

living cells, more specifically, by the role of membranes in compartmentalization of living cells
into “protected reactors”. This direction of research was initiated by Gh. Păun [40], and initial
models were based on a cell-like arrangement of membranes, delimiting compartments where
multisets of objects evolve according to (reaction) rules. The next important step in the develop-
ment of membrane computing was to consider other membrane structure; thus, in [29], tissue-like
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membrane systems were considered, where the membrane structure corresponds to an arbitrary
graph. The latest development of this research area is neural-like membrane systems [23], which
are motivated by spiking neural networks. For general information about membrane computing,
one may consult [42, 44]; for up-to-date source of information and several software products for
simulating P systems, one can go to the P systems web page http://ppage.psystems.eu.

After twenty years of development, a large number of bibliographic references has been
achieved, including theory, applications and implementation software. From a theoretical point
of view, most variants of P systems are Turing complete even when using a small number of
membranes, rules of simple forms, and several ways of controlling the use of rules. Moreover,
most of P systems are efficient, that is, with enhanced parallelism, P systems can solve NP-
complete problems, even PSPACE-complete problems in a feasible time by trading space for
time, that is, P systems can generate an exponential workspace in a linear time. The way to obtain
such an exponential workspace is membrane division [41], string replication [27], membrane
separation [32], membrane creation [30] and other operations.

As a modeling framework, P systems have several attractive features for handling discrete
biological processes: scalability and programmability, ability to handle discrete data, easy un-
derstandability, inherent compartmentalization, etc. Until now applications of P systems have
been investigated in several areas, e.g., optimization problem [60], ecology [6,10], systems biol-
ogy [28], computer graphics [31], fault diagnosis [45], fuzzy reasoning [47], and so on. One can
refer to [9, 19, 59] for more details.

In this work, we focus on the theory of tissue P systems. We first present the definitions of
tissue P systems and several variants of these systems, then some results about Turing univer-
sality and computational efficiency of the variants of tissue P systems are recalled. Finally, a
computational complexity theory within the framework of tissue P systems is introduced, poly-
nomial complexity classes associated with different variants of tissue P systems are defined and
some relevant results are presented. Several frontiers between efficiency and non-efficiency on
the basis of the length of communication rules are presented.

2. Tissue-like P systems

2.1. Basic tissue-like P systems

Tissue P systems are inspired by the structure of tissues and the way of communicating sub-
stances between two cells or between a cell and the environment. The membrane structure of
a tissue P system is described by a graph whose nodes are the cells (the environment is viewed
as a distinguished node) of the system and the arcs are obtained from communication rules. If
an arc between two nodes exists, then they can communicate by means of communication (sym-
port/antiport) rules [38]. Symport rules move objects from one region to other region together in
one direction, while antiport rules move objects between two regions in opposite directions. We
remark that in [29], rules are rewriting rules, and target indications are associated with each ob-
ject obtained. The present work focuses on tissue P systems with communication rules evolving
through applications of symport/antiport rules.

Formally, we recall the definition of tissue P systems (resp., tissue P systems with cell division
and tissue P systems with cell separation [34]) [43].
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1. A tissue P system of degree q ≥ 1 is a construct

Π = (Γ, E ,M1, . . . ,Mq, R, iout),

where:

(1) Γ is a finite set of objects;

(2) E ⊆ Γ is the set of objects initially placed in the environment of the system, all of them
available in an arbitrary number of copies;

(3) Mi, 1 ≤ i ≤ q, are finite multisets of objects initially placed in the q cells of the system;

(4) R is a finite set of rules of the following forms:

– Symport rules: (i, u/λ, j), where 0 ≤ i 6= j ≤ q, u ∈ Γ+;
– Antiport rules: (i, u/v, j), where 0 ≤ i 6= j ≤ q, u, v ∈ Γ+;

(5) iout ∈ {0, 1, 2, . . . , q} is the output region.

When applying a symport rule (i, u/λ, j), the multiset u of objects is sent from region i to
region j; while when applying an antiport rule (i, u/v, j), the multiset u of objects is sent from
region i to region j, and simultaneously the multiset v of objects is sent from region j to region
i.

2. A tissue P system with cell division of degree q ≥ 1 is a construct

Π = (Γ, E ,M1, . . . ,Mq, R, iout),

where:

(1) Π = (Γ, E ,Σ,M1, . . . ,Mq, R, iout) is a tissue P system;

(2) R also contains cell division rules of the form: [ a ]
i
→ [ b ]

i
[ c ]

i
, for i ∈ {1, . . . , q},

i 6= iout, a, b, c ∈ Γ.

When applying a division rule [ a ]
i
→ [ b ]

i
[ c ]

i
to such cell i, under the influence of object

a, such cell is divided into two new cells with the same label; in the first copy, object a is replaced
by object b and in the second one, object a is replaced by object c; all the other objects residing
in such cell i are replicated and copies of them are placed in the two new cells.

3. A tissue P system with cell separation of degree q ≥ 1 is a construct

Π = (Γ,Γ0,Γ1, E ,M1, . . . ,Mq, R, iout),

where:

(1) Π = (Γ, E ,M1, . . . ,Mq, R, iout) is a tissue P system;

(2) {Γ0,Γ1} is a partition of Γ, that is, Γ = Γ0 ∪ Γ1, Γ0,Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;

(3) R also contains cell separation rules of the form: [ a ]
i
→ [ Γ0 ]

i
[ Γ1 ]

i
, for i ∈ {1, . . . , q},

i 6= iout, a ∈ Γ.

When applying a separation rule [ a ]
i
→ [ Γ0 ]

i
[ Γ1 ]

i
to such cell i, under the influence

of object a, the cell with label i is separated into two new cells with the same label; at the same
time, object a is consumed; the objects from Γ0 are placed in the first cell and those from Γ1 are
placed in the second cell.
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2.2. Some variants of tissue-like P systems
Tissue P systems with symport/antiport rules have been first investigated in [39], and then the

model has been extended in [17] by adding a notion of state to communication channels, which
can be modified when a communication rule is applied. Instead of using maximal parallelism,
in [17], rules are used in a sequential manner for each channel and in a parallel manner for the
system, that is, for each channel, at most one rule is used, but all communication channels evolve
in parallel at the same time.

Besides the maximal parallelism, other strategies of using rules were also considered in mem-
brane computing. In [33], the notion of the flat maximal parallelism was first proposed, where
in each membrane, a maximal set of applicable rules is chosen and each rule in the set is applied
exactly once in each step. In [55], the flat maximal parallelism strategy was investigated for
tissue P systems with channel states, where on each channel, a maximal set of applicable rules
is chosen and each rule in the set is applied once in each step. The flat maximal parallelism was
also considered in tissue P systems with promoters [37].

Inspired from the living cell, several ways of generating new cells have been considered:
membrane division [41], membrane separation [32], membrane creation [27], which make it
possible to generate an exponential workspace, and can solve computationally hard problems in
a feasible time. In [43], cell division is introduced into tissue P systems, and the SAT problem
is solved by tissue P systems with cell division (see [13, 14, 16] for more details and solutions to
different NP-complete problems using these systems). Tissue P systems with cell separation were
proposed in [34], and a computational complexity theory in the framework of such P systems was
investigated.

In biological systems the parallelism occurs at various levels and involves different com-
ponents and chemical elements. If rules used involve objects from one or two regions, there
have been proposed tissue P systems with conditional uniport [57] or evolution-communication
[4, 5, 7]. If rules used involve objects from four regions, two acting as inputs and two as outputs,
generalized communication P systems were proposed [11, 12, 24, 58].

Recently, tissue P systems with evolutional symport/antiport rules were proposed in [56],
where objects were moved between cells or between a cell and the environment, and may be
evolved during this process. Moreover, cell division is introduced into tissue P systems with
evolutional symport/antiport rules, and a variant of P systems, called tissue P systems with evo-
lutional symport/antiport rules and cell division was proposed [56]. In [36], cell separation is
introduced into tissue P systems with evolutional symport/antiport rules, and a computational
complexity theory in the framework of such P systems was investigated. There are several other
classes of tissue P systems, for instance, introducing promoters or inhibitors [52], energy [1],
proteins [8, 54], etc.

2.3. Computation power of tissue-like P systems
Many variants of tissue P systems have been proposed, and most of the models are Turing

universal [2,3,18,25,53]. Here we briefly present the computation power of tissue P systems with
channel states and tissue P systems with evolutional symport/antiport rules. For the computation
power of other classes of tissue P systems, one can refer to [44] for more details.

Tissue P systems with channel states were proposed in [17], where the systems with one cell,
rules of any weight and any number of states can only compute Parikh sets of matrix languages,
while the systems with two cells are Turing universal when using minimal antiport rules and
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arbitrarily many states or antiport rules of weight two and one state. Also the systems with
arbitrarily many cells, minimal antiport rules and three states are Turing universal. In [55], the
computation power of tissue P systems with channel states working in a flat maximally parallel
way were investigated, where the systems with arbitrarily many cells, arbitrarily many states and
antiport rules of length two are able to compute Parikh sets of finite languages; the systems with
one cell, arbitrarily many states and noncooperative symport rules can compute at least all Parikh
sets of matrix languages; moreover, the systems are Turing universal with one cell, one state
and symport rules of length three or with two cells, arbitrarily many states and symport rules of
length one or with arbitrarily many cells, four states and symport rules of length one.

In tissue P systems, objects evolve by means of symport/antiport rules, and objects just
change their place within the system. In [56], tissue P systems with evolutional symport/antiport
rules were considered, where objects may be evolved when they are moved between cells or
between a cell and the environment. It is proved that tissue P systems with evolutional sym-
port/antiport rules are Turing universal by using one cell and evolutional symport rules of length
at most three or evolutional antiport rules of length at most four [56].

In the next section, we will recall the computational complexity results for tissue P systems
with symport/antiport rules (resp., tissue P systems with evolutional symport/antiport rules) and
cell division or cell separation.

3. Computational complexity of tissue P systems

3.1. Recognizer tissue P systems with cell division or cell separation

In order to solve decision problems, the notions from classical Computational Complexity
Theory are considered in membrane computing. Here we define recognizer tissue P systems
with cell division [43] or cell separation [34].

4. A recognizer tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E ,M1, . . . ,Mq, R, iin, iout),

where

• (Γ, E ,M1, . . . ,Mq, R, iout) is a tissue P system with cell division of degree q ≥ 1;

• Γ contains two distinguished objects yes and no;

• Σ is an (input) alphabet contained in Γ;

• M1, . . . ,Mq, are finite multisets over Γ \ Σ;

• iin ∈ {1, . . . , q} is the input cell, and iout = 0;

• all computations halt;

• if C is a computation of Π, then either object yes or object no (but not both) must have
been released into the environment at the last step of the computation.
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5. A recognizer tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ,Γ0,Γ1, E ,Σ,M1, . . . ,Mq, R, iin, iout),

where

• the tuple (Γ,Γ0,Γ1, E ,M1, . . . ,Mq, R, iout) is a tissue P system with cell separation
of degree q ≥ 1, where Γ strictly contains an (input) alphabet Σ and two distinguished
objects yes, no, andMi (1 ≤ i ≤ q) are multisets over Γ \ Σ;

• iin ∈ {1, . . . , q} is the input cell and iout is the label of the environment;

• if C is a computation of Π, then either object yes or object no (but not both) must have
been released into the environment at the last step of the computation.

A computation C is said to be an accepting computation (resp., rejecting computation) of a
recognizer tissue P system with cell division or with cell separation if object yes (resp., object
no) appears in the environment when the computation reaches the halting configuration, while
neither object yes nor no appears in the environment when the computation cannot stop.

We denote by TC (resp., TDC, TSC) the class of recognizer tissue P systems (resp., with
cell division or cell separation). For each natural number k ≥ 1, we denote by TC(k) (resp.,
TDC(k), TSC(k)) the class of recognizer tissue P systems (resp., with cell division or cell
separation) and communication rule of length at most k (the length of a symport/antiport rule
is the total number of objects involved in the rule). If the alphabet of the environment is empty,
then we denote by T̂C, T̂DC, T̂ SC, T̂C(k), T̂DC(k), T̂ SC(k), respectively, the corresponding
classes.

We denote by TEC (resp., TDEC, TSEC) the class of recognizer tissue P systems with
evolutional symport/antiport rules (resp., and cell division or cell separation). If the length of an
evolutional communication rule is the total number of objects involved in the rule, for each natu-
ral number k ≥ 1, we denote by TEC(k) (resp., TDEC(k), TSEC(k)) the class of recognizer
tissue P systems (resp., with cell division or cell separation) and evolutional symport/antiport
rule of length at most k. If the alphabet of the environment is empty, then we denote by T̂EC,
T̂DEC, T̂ SEC, T̂EC(k), T̂DEC(k), T̂ SEC(k), respectively. If the length of an evolutional
symport/antiport rule is defined as an ordered pair whose first component is the total number of
objects involved in the left hand side of the rule and the second component is the total num-
ber of objects involved in the right hand side of the rule, then we denote by TEC(k1, k2),
TDEC(k1, k2), TSEC(k1, k2), T̂EC(k1, k2), T̂DEC(k1, k2), T̂ SEC(k1, k2), respectively.

Next, we present the definition of solving a problem in a uniform way by means of families
of recognizer tissue P systems with cell division or cell separation [46].

6. Let R be a class of recognizer tissue P systems with input cell. A decision problem X =
(IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N of recognizer tissue P
systems fromR in a uniform way, and we denote this byX ∈ PMCR if the following conditions
hold:

• The family Π is polynomially uniform by Turing machines.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such that:
(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset
of the system Π(s(u)); (b) for each n ∈ N, s−1(n) is a finite set; and (c) the family Π is
polynomially bounded, sound and complete with regard to (X, cod, s).
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Let R be a class of recognizer tissue P systems (resp., with cell division or with cell separa-
tion). We denote by PMCR the set of all decision problems that can be solved in polynomial
time by means of families of systems from R. The class PMCR is closed under complement
and polynomial-time reductions [49].

3.2. Efficiency of tissue P systems with cell division or cell separation
In this subsection, we give some known results about the computational efficiency of several

models of tissue P systems, that is, their capability to solve computationally hard problems in an
efficient way.

(1) Basic tissue P systems
A basic tissue P system is defined as in Definition 1. In [15], it was shown that families of

recognizer tissue P systems which solves a decision problem can be efficiently simulated by a
family of recognizer transition P systems solving the same problem. Moreover, it is well known
that families of recognizer transition P systems can only solve problems in class P in polynomial-
time [22]. Hence we have the following result.

Theorem 1. P = PMCTC .

(2) Tissue P systems with cell division or cell separation
By using the technique of dependency graph, it is shown that tissue P systems with cell

division and communication rules of length at most 1 can only efficiently solve problems in class
P [21].

Theorem 2. P = PMCTDC(1).

If we consider tissue P systems with cell division and communication rules of length at most
2, it is shown that the HAM-CYCLE problem (a well known NP-complete problem [20]) can be
efficiently solved in polynomial-time by such systems [51]. Hence we have:

Theorem 3. HAM− CYCLE ∈ PMCTDC(2).

Theorem 4. NP ∪ co−NP ⊆ PMCTDC(2).

By using the simulation technique, it is proved that only problems in class P can be solved in
polynomial-time by families of tissue P systems with cell separation when using communication
rules of length at most 2 [35].

Theorem 5. P = PMCTSC(2).

If we consider tissue P systems with cell separation and communication rules of length at
most 3, it is shown that the SAT problem can be efficiently solved in polynomial-time by such
systems [50]. Hence we have:

Theorem 6. SAT ∈ PMCTSC(3).

Theorem 7. NP ∪ co−NP ⊆ PMCTSC(3).

(3) Tissue P systems with cell division (or cell separation) and without environment
Now we consider tissue P systems with cell division (or cell separation) and without environ-

ment.
By using the algorithmic technique, it is shown that families of tissue P systems with cell

separation and without environment can only solve problems in class P [26]. Hence we have:
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Theorem 8. P = PMC
T̂SC

.

By using the simulation technique, it is shown that each family of recognizer tissue P systems
with cell division when using communication rules of length at most k ≥ 1 and solve a decision
problem X in polynomial-time, can be efficiently simulated by a family of recognizer tissue P
systems with cell division and without environment when using communication rules of length
at most k ≥ 1, solving X in polynomial-time [48].

Theorem 9. For each k ≥ 1 we have: PMC
T̂DC(k)

= PMCTDC(k).

3.3. Efficiency of tissue P systems with evolutional symport/antiport rules
and cell division or cell separation

Evolutional symport/antiport rules were considered in tissue P systems in [56], and also cell
division rules were introduced into such P systems. In [36], tissue P systems evolutional sym-
port/antiport rules and cell separation were proposed, and computational complexity of such P
systems was investigated.

Bearing in mind that any classical symport/antiport rule of the form (i, u/v, j) can be con-
sidered as a particular case of the evolutional symport/antiport rule [ u ]

i
[ v ]

j
→ [ v ]

i
[ u ]

j
, the

following results are obtained.

Theorem 10. For X ∈ {D,S}, we have TXC ⊆ TXEC.

Theorem 11. For X ∈ {D,S} and for each k ≥ 1, we have

TXC(k) ⊆ TXEC(k, k) ⊆ TXEC(2k).

Theorem 12. For X ∈ {D,S} and for each k1, k2 ≥ 1, we have

TXEC(k1, k2) ⊆ TXEC(k1 + k2).

In [56], it is shown that only tractable problems can be efficiently solved by families of
systems from TDEC(2), but the SAT problem can be solved by a family of systems from
TDEC(4).

Theorem 13. PMCTDEC(1) = PMCTDEC(2) = P.

Theorem 14. SAT ∈ PMCTDEC(4).

In [36], it is shown that only tractable problems can be efficiently solved by families of
systems from TSEC(n, 1) or from TSEC(1, n), for each natural number n ≥ 1; moreover, the
SAT problem can be solved in polynomial time by a family of systems from TSEC(3, 2).

Theorem 15. For each natural number n ≥ 1, we have

PMCTSEC(n,1) = PMCTSEC(1,n) = P.

Theorem 16. SAT ∈ PMCTSEC(3,2).
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4. Conclusions and remarks
In this work, a survey of tissue-like P systems has been presented, including several variants

of such systems. Additionally, some results about Turing universality and computational effi-
ciency have been recalled. Moreover, a computational complexity theory within the framework
of tissue P systems with symport/antiport rules (resp., with evolutional symport/antiport rules),
with or without environment and using cell division or cell separation has been recalled. Addi-
tionally, polynomial complexity classes associated with several variants of tissue P systems are
defined and some relevant results have been defined. Finally, different borderlines between effi-
ciency and non-efficiency on the basis of the length of communication rules have been presented.

In subsection 2.2, many variants of tissue P systems have been introduced, several of them
are inspired by some basic features of biological membranes or other biological processes. An
important research line is to consider new variants of tissue P systems and investigate the com-
putational property of such P systems.

From subsection 3.2, we see that many problems remain open about tissue P systems with
evolutional symport/antiport rules and cell division or cell separation. For instance, can NP-
complete problems be solved by a family of systems from TDEC(3)? What is the computa-
tional efficiency of a family of systems from TSEC(2, 2)?
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puting Model as a New Tool for Modeling Ecosystems: The Avian Scavengers as a Case Study, Ecol.
Model. 222(1), 33–47, 2011.
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ficient Simulation of Tissue-Like P Systems by Transition Cell-Like P Systems. Nat. Comput. 8(4),
797–806, 2009.
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[17] FREUND R., PĂUN Gh., PÉREZ-JIMÉNEZ M. J., Tissue P Systems with Channel States, Theor.
Comput. Sci. 330(1), 101–116, 2005.

[18] FREUND R., VERLAN S., (Tissue) P Systems Working in the k-Restricted Minimally or Maximally
Parallel Transition Mode, Nat. Comput. 10, 821–833, 2011.
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in Tissue P Systems, In Pan, L., Păun, Gh., Song, T. (eds.) Pre-proceedings of Asian Conference
on Membrane Computing (ACMC 2012), Huazhong University of Science and Technology, Wuhan,
China, October 15-18, pp. 61–73, 2012.

[36] PAN L., SONG B., VALENCIA-CABRERA L., PÉREZ-JIMÉNEZ M. J., The Computational Com-
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