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Abstract. The new coronavirus epidemic, which outbroke in 2019, has now grown 
into a full-blown pandemic, raising global concerns by its high infection speed and 
mortality rate. People developing the disease fill emergency hospitals, while the problem 
may deepen if worried general population cluster emergency rooms just for diagnosis. To 
control such respiratory disease epidemic, governments and medical staff usually decide 
to reduce virus transmission by enforcing social distance and placing in quarantine all 
persons suspected of carrying the virus. Everyone else is asked to stay insulated as long as 
possible, and refrain from calling emergency services unless relevant symptoms appear. 
With the medical staff shortage forced by such an epidemic, it would be very useful to 
have a diagnosis system capable of checking people for symptoms. As the direct contact 
of patients with objects used in common may raise virus transmission concerns, non-contact 
devices are accepted for use in evaluating a person’s health condition. Under these 
limitations, we present a cough sound recognition method, which, as new relevant data 
become available, can be extended to work more as a respiratory disease diagnostic tool. 
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1. Introduction 

 
We are now in an ongoing coronavirus pandemic which outbroke during December 

2019 in Wuhan, province of Hubei, China. The virus, known under several medical names, 
such as HCoV-19, SARS-nCov19, and SARS-Cov-2, inflicts a Severe Acute Respiratory 
Syndrome (SARS), called the Coronavirus disease 2019, or COVID-19 [1]. Common 
symptoms include fever, cough, and dyspnea, while other symptoms may include fatigue, 
muscle pain, diarrhea, sore throat, loss of smell, loss of taste, and abdominal pain [2]. 
While most of infected individuals show mild symptoms, some develop viral pneumonia 
and multi-organ failure. 

The coronavirus was found as most contagious during the first three days after the 
onset of symptoms, although both asymptomatic spread and pre-symptomatic spread are 
considered [3]. The virus is mainly transmitted between people, during close contact, via 
small droplets produced by coughing, sneezing, or talking. While these droplets are 



produced when breathing out, they usually fall to the ground or on surfaces rather than 
being infectious over large distances. People may also get infected by touching their face 
after having touched a contaminated surface, where the virus can survive for up to 72 
hours [4]. The COVID-19 has generated worldwide concern, and the World Health 
Organization (WHO) has classified the epidemic as a global public health emergency. 
With more than 280,000 lives taken so far, it follows the path of other major respiratory 
virus epidemics. The SARS in 2002, the Middle East Respiratory Syndrome (MERS) in 
2012, and the avian flu H7N1 in 2013, all claimed hundreds of lives, but the SARS-CoV-
2 threatens with damages nearing those of the swine flu virus H1N1, which killed more 
than 284,500 people in 214 countries and territories between 2009 and 2010 [5]. 

All the above-mentioned epidemics attack the human respiratory system, and SARS-
CoV-2 spreads through activities such as coughing, sneezing, and even breathing. Once 
the virus contamination occurred, the respiratory sounds may change, even before the 
onset of other observable symptoms.  

The lack of a known cure, the symptoms and life-cycle of SARS-CoV-2 make the 
outbreak difficult to control and manage, so that authorities had to impose lockdowns on 
public places, cities, and even regions. The World Health Organization and healthcare 
agencies, as first responders to such threats, recommend governments to place 
symptomatic people in quarantine facilities, while asking all possible virus importers 
(which came lately from abroad or got in close contact to persons found positive at virus-
carrying tests) to self-isolate at their home. For efficient epidemiologic inquiries to be 
conducted, meant to discover and isolate persons suspected of carrying the virus, 
movements and health status of yet asymptomatic people must be controlled. To this end, 
smartphones and smartphone applications play a key role, enhanced locally by some states 
which provided applications and networked infrastructure for citizen health state 
monitoring. Movement control may consist in collecting telephone call data, GPS location 
of personal smartphones, as well as checking of respiratory symptoms. 

This creates a good base for respiratory symptoms in SARS-CoV-2 infection, such 
as cough sound, to be identified by analysis of audio recordings of collected respiratory 
sounds. Thus, cough detection, classification, and recognition became important topics in 
the context of respiratory epidemics, against which many researchers enrolled with the 
goal of fighting epidemics by signal processing. 

In this paper, we present a method of cough sound recognition which can detect and 
classify cough sounds, by automatically and cumulatively learning adequate features for 
the classification task, then computing the strength of the classification decisions. The 
presentation is organized as follows. A review of current literature in the field is presented 
in section 2. Section 3 hosts the description of the problems faced by cough recognition 
methods in the context of respiratory disease epidemics, while section 4 describes the 
method we propose, the reference corpora and experiments conducted. Finally, section 5 
contains the conclusions of the study. 
 

2. Review of current research 
 

The first to use deep learning in detecting cough events were Amoh and Odame [6]. 
In their first work on this subject, back in 2015, they compared classical machine learning 
algorithms such as Hidden Markov Models (HMM) with Gaussian Mixture Models 
(GMMs) outputs and Support Vector Machines (SVMs) with Convolutional Neural 
Networks (CNNs). The classical machine learning classifiers were trained on Mel-
Frequency Cepstral Coefficients (MFCCs), while the CNNs exploited a Short-Time 
Fourier Transform (STFT) spectrogram. Their work continued in 2016 [7], when they also 
explored the possibility of using Recurrent Neural Networks (RNNs) for the same task 



(classification of short audio files into cough vs. non-cough). All their experiments were 
performed on a private dataset that was recorded specifically for their study, comprising 
627 cough events from 14 people. The audio recordings were performed with a wearable 
microphone. 

Although deep learning was already being used for the task of cough detection since 
2015, some new studies still resorted to traditional machine learning classifiers such as 
Random Forests (RF) [8], various flavors of SVMs [9, 10, 11, 12], k-Nearest Neighbors 
(kNN) [10], or logistic regression [13]. However, the dominant approach is by far the 
CNN applied either on mel-spectrograms [14, 15] or STFT spectrograms [16, 17]. The 
popularity of CNNs is probably based on their advantage of being able to process time-
variable inputs. Vanilla Deep Neural Networks (DNN) were also used in two studies 
which found an innovative way to deal with the variable-length of the input. Khomsay et 
al. [18] extract a Fast Fourier Transform (FFT) from the full audio signal, then apply 
Principal Component Analysis (PCA) to lower the dimensionality of the feature vector 
from 1,024 to 100 and finally feed this 100-dimensional vector into a DNN. Kadambi et 
al [19] process fixed-size segments of 200 milliseconds. They extract MFCC-based 
feature sets from 4 non-overlapping windows of 50 milliseconds, concatenate all the 
features into an 168-dimensional feature vector and feed it to a vanilla DNN. Finally, 
following [7], there was a second study to use RNNs, more specifically RNNs with Long 
Short-Term Memory (LSTM) units, for cough detection. Miranda et al. [17] recently made 
a comparative study of deep architectures for acoustic cough detection and tried out 
DNNs, CNNs and LSTMs. 

In terms of features, besides classical MFCCs, mel-scaled spectrograms and STFT 
spectrograms, Monge-Álvarez et al. [10] used an ensemble of multi-dimensional spectral 
features such as Linear Prediction Cepstral Coefficients (LPCC), GammaTone Cepstral 
Coefficients (GTCC), Normalized Audio Spectral Envelope (NASE), Octave Spectral 
Contrast (OSC) and Spectral Subband Centroid Histograms (SSCH) plus 13 additional 
uni-dimensional spectral features. Finally, they calculated local Hu moments as a robust 
candidate feature set for cough detection in noisy environments [11, 12]. Pramono et al. 
[13] also resorted to traditional spectral features such as the high-frequency content in B-
HF ratio, the min-max ratio in B-01 (low) frequency band, and the low quantile ratio also 
in B-01 band. In these studies, the aforementioned spectral features were fed into 
traditional machine learning classifiers such as SVM, RF, or kNN. 

While most of the papers on cough detection report performance metrics such as 
sensitivity, specificity, or area under receiver operating characteristic (AUC), we consider 
that these results are not comparable. The main problem is the fact that all the studies use 
self-created or private datasets, which they do not make available for further comparative 
investigation. Moreover, the datasets are very diverse. They start with as few as 7 patients 
[9] and go up to 43 patients [14]. Some datasets comprise just a few cough examples: 262 
in [16] and around 300 in [18], while others have over 1,000 positive examples: around 
1,000 in [10]; 1,500 in [15]; 5,670 in [19]; 6,737 in [14]; and 13,000 in [9]. 

Finally, the cough detection task is not uniformly formulated. In most studies, the 
dataset comprises short cough (usually 1 second long) and non-cough examples. However, 
the non-cough examples are speech-only in some cases and more varied (speech, laughter, 
sneeze, throat clearing, wheezing sound, whooping sound, machine noises, and other types 
of noise) in other, more rare cases. This, of course, has an impact on the difficulty of the 
task. More practical formulations of the task are proposed in [9] and [19]. They address 
cough detection as a continuous monitoring task and they continuously process 1 second, 
respectively 200 milliseconds long segments of audio from 24-h recordings. Finally, Bales 
et al. [16] proposes yet another, very different, formulation of the task. Their dataset 
comprises only cough sounds (a total of 262), which correspond to three different 
respiratory illnesses: bronchiolitis, pertussis, and bronchitis, and they aim at classifying 
the illness. 



3. Problems of cough sound recognition in respiratory disease 
     epidemics 

 
One of the biggest problems with epidemics is that their earliest stages are critical to 

understanding what disease is being dealt with. As soon as some data are available, the 
first objective of the uninterrupted fight against new possible respiratory epidemic is to 
tag each disease case as known or unknown. If known, then the protocols and the 
knowledge needed to tackle it down are usually in place, while if unknown, it may be a 
new variant of a known disease or some totally new illness. 

Whatever the cough monitoring algorithm is, the cough count output is not as 
informative as needed by medical doctors, because sometimes they need to diagnose faster 
than the time necessary for obtaining reliable measurements. Cough monitoring alone 
does not offer a useful diagnosis of epidemic diseases until it is known which disease has 
outbreak as epidemic.  

Cough has a great deal of variations, such as dry and wet, with single expulsion, as 
opposed to several expulsions of air, while being a symptom of numerous respiratory 
diseases, both chronic and acute. For chronic respiratory diseases, such as the Chronic 
Obstructive Pulmonary Disease (COPD) and asthma, monitoring of cough has already 
become one of recommended measures to take to predict severe episodes. For acute 
conditions, as well as for episodes of chronic diseases, particular aspects of the cough are 
looked for, such as wheezing (monophonic or polyphonic), crackle (fine or coarse), 
rhonchi, stridor, pleural rub (pleural friction), and squawk sounds [20]. 

Illnesses such as COVID-19 are easy to mistake as a cold or flu, even by specialists, 
and that’s why sometimes X-ray images are necessary, besides respiratory sounds, and 
knowledge of results from other tests, to assist in reaching a correct diagnostic, with 
human intervention as a must. 

Another problem is that the cough classification algorithms used in machine learning, 
and especially deep learning, need to see vast amounts of real data before doing reliable 
classification. Given that it is never useful at the time the first unknown respiratory disease 
case is reported, the need of data collection for deep learning algorithms is often omitted 
by first line caregivers, and collecting it afterwards means to let the epidemic evolve 
wildly in the meantime. 

Specific observations on the health state of any patient are separated into several 
sections of hospitals’ data management systems, which makes it difficult to extract and 
compile time synchronous data for datasets usable in epidemic crisis management. Ideally, 
specific observations on the health state of any patient should fit in parts of readily 
prepared data point templates which would comprise respiratory sounds, thoracic X-rays, 
body temperature, body-worn sensors, self-assessment data on general state, and so on, all 
attached to the person being observed, without the real world ID data.  

Lung sounds are non-stationary, with their evolutions in time leading to complicated 
procedures for analysis, recognition, and distinction. Sound recognition algorithms should 
therefore consider features based on large analysis windows, together with other recursive 
techniques. 

Sound and image collection, whatever their type, should preferably be non-contact, 
to reduce the risk of transmitting contagious diseases. This raises concerns about using 
medical devices such as stethoscopes, including digital ones, and recommends the use of 
personal devices, wearable or not. Tracheal microphones and some laryngophones need 
specialized personnel to install them in medically correct installation points, as well as a 
corresponding level of biohazard security, and therefore are of limited use. 

Smartphone applications are a widespread good way to securely and precisely record 
(or even self-record) respiratory sounds of patients. When installed on a patient’s body, it 
can collect various features, such as audio and accelerometer, but also body temperature, 
blood O2 saturation, and so on, and inject it into the extended dataset during sleep hours. 

Although data sources in respiratory disease epidemics are heterogenous and rather sparse 
in time, there is no overall model of the human body, as a context of respiratory symptoms. 
Such a model could be initialized and fine-tuned with individual data for each patient. 



4. Proposed method and experiments 
 

A patient’s timeline is able to get filled in with its own data of medical importance in 
epidemics, such as evaluations on global risks against patient’s life, as well as 
contagiousness to others, but the most useful conclusions are still drawn by specialized 
medical staff. For that, they need various views on the acquired knowledge pertaining to 
the patient involved, including discovery of comorbidities. 

Such a task is enormous in epidemics, and it needs to be started as soon as possible, 
even if data from important investigations are not available initially. The low volume and 
lack of significance of first pieces of data collected, in case of unknown respiratory disease 
epidemics, do not support early intervention. We thus propose a method which can rapidly 
start as a recognizer of cough – a symptom in most of respiratory illnesses.  

As soon as new relevant data volumes are collected, the cough sound recognition can 
be expanded, by re-training the feature extractors and classifiers on the evolved dataset, 
in order to perform better and tackle more classes of sounds of medical importance. Given 
that acoustic waves carrying the information of interest are exposed to contamination by 
unwanted sound sources, during the collection in various environments (at home, during 
the ambulance transportation, or during intensive therapy), there is a need to also label 
known classes of interferers and sounds of normal states (in our case, non-cough sounds).  

This is why we started an exploratory process with sound classification experiments, 
in which we used feature extractors trained on sound event corpora of various number of 
classes, not just “cough” and “non-cough”. The exploration includes three experiments 
with extracted features examined separately, and classifiers specially trained in each case. 

The principle of the proposed method, depicted in Fig. 1, and evaluated mainly through 
the fourth experiment, relies on combining complementary features, extracted from the 
same waveform. Input signals are first split in sound events, although some corpora already 
are in a one-event-per-file format. The extractors used are time-aligned at the short-time 
analysis level, so that all feature extractors (n = 2 in our case), produce the same number 
of feature vectors. For a more performant classification, vectors from both extractors, for 
the same analysis window, are concatenated to form the input of the final classifier. 

 
Fig. 1 – The principle of the proposed method (n = 2) 

We begin the presentation with the resources used, that is, with the description of 
corpora used to adapt the feature extractors to input corpora, then the adaptable feature 
extractors will be presented, followed by the description of the sequence of experiments. 

 
4.1 Sound event corpora 
4.1.1 ESC-50 v2.0 Dataset [21] 
The ESC-50 dataset consists of 2,000 labeled environmental sounds, equally 

balanced between 50 classes (40 clips per class). For convenience, they are grouped in 5 
loosely defined major categories (10 classes per category): animal sounds, natural 
soundscapes, and water sounds, human (non-speech) sounds – including coughing, 
interior/domestic sounds, exterior/urban noises. The goal of the database build was to keep 
sound events exposed in the foreground with limited background noise when possible. 

However, naturally occurring events are far less clean. A variety of sound sources are 
present, from some very common (laughter, cat meowing, dog barking) to some quite 
distinct (glass breaking, brushing teeth), while some class differences are more nuanced 



(helicopter and airplane noise). The events contained in the dataset come from an initial 
collection of files, some of which contain more than one sample of the event, while yet 
others contain several samples from different sound classes This is why sound event 
databases often come with metadata files, where data such as the label, validation fold, 
event ID and position in the contents of initial files are stated for each sample. 

4.1.2 ICBHI’17 Respiratory Sound (IRS17) Database [22] 
The database consists of a total of 5.5 hours of audio containing 6,898 respiratory 

cycles, of which 1,864 contain crackles, 886 contain wheezes, and 506 contain both 
crackles and wheezes, stored in 920 annotated audio files from 126 subjects. 

The cycles were annotated by respiratory experts with four labels: “crackles”, 
“wheezes”, “both”, and “none”. The recordings were collected using heterogeneous 
equipment and their duration ranged from 10 s to 90 s. The sensors and chest locations 
from which the recordings were acquired are also provided in the metadata. Noise levels 
are often high, like in real life conditions. 

4.1.3 Sweet Home Cough (SHC) corpus [23] 
A number of 882 sound events were identified in 240 event recordings, consisting in 

separate short and long cough sound events, as well as voice-fix sounds, voluntarily 
produced by 9 women and 6 men of ages between 20 and 41. The recordings were made 
using a SWEET_HOME facility, under the supervision of Michel Vacher and François 
Portet, from the GETALP group at Laboratoire d’Informatique de Grenoble, France [24]. 
In view of the experiments conducted, we placed the sound events in categories labelled 
as “short_cough”, “long_cough”, and “voicefix”. 

 
4.2 Features and feature extractors used 
As we train feature extractors to discover the most discriminative features in a given 

corpus, different features are discovered in different training corpora. The trainable feature 
extractors we selected are taken as complementary. 

4.2.1 SoundNet type features [25] 
The first feature type we used was produced by a SoundNet neural network, shown 

in Fig. 2, in which a deep 1-D Convolutional Neural Network (CNN) was trained by 
authors of [25] in a student-teacher architecture, using a corpus of more than 2,000,000 
unlabeled videos, in 1,000 sound event categories (including cough sounds), and 400 
different environment categories (Places CNN). 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – SoundNet architecture, from [25] 



Natural synchronization between image and sound is leveraged by learning acoustic 
representations from videos, using a student-teacher training procedure. From well-
established CNN visual models (i.e. ImageNet and Places), the discriminative visual 
knowledge is transferred into the sound modality using unlabeled video as a bridge [25]. 
Extracted features are the layer coefficients from conv5 to conv8, respectively, as shown 
in Fig. 2, which correspond to layers 14 to 24 in the computation graph. We only used the 
conv8 features, which are the coefficient set from layer 24. 

According to the experimental needs, the CNN audio feature extractor was used both 
as given and after fine-tuning, with audio data alone. For consistency reasons, the 
SoundNet fine-tuning will be still called “training”. The fine-tuned extractor was denoted 
as SoundNet-FT, because of changes incurred in the type of features. 

4.2.2 auDeep type features [26] 
AuDeep project aims to provide unsupervised feature learning with DNNs, for 

sequence-to-sequence classification This is paramount in case of unknown respiratory 
illnesses, because of the classification of unlabeled events. In Fig. 3., the internals of the 
recurrent autoencoder (RAE) are presented, where t0, t1, t2, …, tn-1, and tn are the center 
timestamps of the successive signal analysis windows, “0” is an initialization all-zero 
spectrum, and the extracted features are the final states of the encoder. 

 
Fig. 3 – auDeep diagram of the recurrent autoencoder feature extraction [26] 

In the auDeep Python toolkit [27], the input audio sample is first converted into a 
configurable log-mel-spectrogram. We chose to use 256 mel-frequency bands, over 0.16 s 
long analysis windows, with 50% overlap, and normalized to [–1; 1]. The auDeep allows 
the transformation of spectrograms so that values under a specified threshold are clipped. 
The features extracted by auDeep with different spectrogram thresholds can be combined 
using an internal mechanism of feature fusion, presented in Fig. 4. 

 
Fig. 4 – auDeep feature fusion mechanism [26] 

The length of output feature vectors is adjustable for both extractors. For auDeep, the 
internal feature fusion mechanism can be used, while for the SoundNet, the coefficients 
from a different range of network layers can be selected as trained features. Nevertheless, 
we used a single spectrogram clipping threshold in auDeep, at –60 dB (no internal fusion), 
while from the SoundNet we retained the layer 24 coefficients as output features. 



4.3 Sound classification and cough sound recognition experiments 
As we needed to examine sound events specific to at least home, transportation, and 

hospital environments, we considered finding a suitable feature set, by training feature 
extractors on more or less adequate datasets. Given that the selection of the corpora may 
have a tremendous effect on the performance of the classification, three exploratory 
experiments were conducted on selected corpora, before the cough sound recognition 
performed in the fourth experiment. The exploration was aimed at checking cough sound 
recognition performance using Multi-Layer Perceptron (MLP)-type classifiers, especially 
because of their good discrimination power. 

All classifiers used the same hidden structure, consisting in two layers of 150 ReLU-
activation units each, while the Softmax output size was different, according to the number 
of classes in the training corpus considered. The classifiers were trained using an Adam 
optimizer for 50 epochs, with a 0.001 learning rate and 40% dropout regularization. 

The MLP for each classification task was trained on half the corpus involved, selected 
randomly, while the evaluation was performed on the remaining half. Considering the 
degree of similarity between the structure, training, and testing of all MLP classifiers 
intended, in the remaining part of the present paper we call it a standard MLP.  

 
4.3.1 Sound classification with feature extractors trained on ESC-50 
For this experiment we trained the auDeep and SoundNet feature extractors, along 

with SoundNet-FT, on the whole ESC-50 corpus. They were next used to produce features 
for all files in three corpora: ESC-50, IRS17, and SHC. Nine standard MLP classifiers had 
to be trained, one for each corpus-extractor pair. The accuracy of all classifiers is presented 
in Table 1, per feature type. 

 
Table 1 – Classification accuracy for extractors trained on ESC-50 

Corpus Samples 
(classes) 

Accuracy in [%] 
by feature type 

auDeep SoundNet SoundNet-FT 
ESC-50 2,000 (50) 70.4 74.2 74.9 
IRS17 6,898 (4) 67.3 64.6 74.5 
SHC 882 (3) 68.5 62.7 69.7 

 
When tested on corpus ESC-50 with features trained on the same corpus (see Table 1), 

the SoundNet-FT performed best, as expected, with a 74.9% accuracy. Given that audio 
event samples in ESC-50 are clipped at 5 seconds, and some cough sounds may occur 
more than once, the identification performance does not allow a precise discrimination 
between files containing one, two, or more cough sounds. Respiratory sounds in IRS17 
and cough sounds in SHC were classified with a similar accuracy because they show some 
similarity with classes already present in ESC-50. The superior performance on ESC-50 
for all the feature extractors used is a direct result of matching the corpora for training of 
feature extractors and the training and testing of the classifiers. 

 
4.3.2 Sound classification with feature extractors trained on SHC 
The auDeep and SoundNet feature extractors were trained for this experiment on the 

entire SHC corpus. Both feature extractors, along with SoundNet-FT, were then used to 
produce features for all files in the three corpora: ESC-50, IRS17 and SHC. Nine more 
standard MLP classifiers had to be trained, with 3 output units, this time (“short_cough”, 
“long_cough”, and “voicefix”). Classification accuracy, as evaluated for each corpus-
feature type pair, is shown in Table 2.  

 



Table 2 – Classification accuracy for extractors trained on SHC corpus 

Corpus Samples 
(classes) 

Accuracy in [%] 
by feature type 

auDeep SoundNet SoundNet-FT 
ESC-50 2,000 (50) 27.4 74.2 46.9 
IRS17 6,898 (4) 21.3 64.6 24.5 
SHC 882 (3) 88.4 62.7 95.5 

 
Classifiers trained with features adapted to SHC performed worse than in experiment 

4.3.1, except for those trained on features from pre-trained SoundNet, which performed 
similarly. This could be explained in part by the presence in SHC corpus of sounds 
dissimilar to most of ESC-50 and IRS17 classes. Thus, all feature extractors performed 
better on “coughing” and “voicefix” classes, but worse on most of the other classes. One 
notable exception was produced by SoundNet-FT, which reached 95.5% accuracy. This 
result, although at the state-of-the-art level, may be a circumstantial one, most probably 
explained by the repeatability of characteristics of the cough sounds from each corpus 
contributor. The need of a supplemental balance between sound source persons is 
important when gathering datasets for cough recognition on a large scale. On the other 
hand, it shows a real potential for particularization of cough recognition to each person. 

 
4.3.3 Sound classification with feature extractors trained on a special 10-class corpus 
A new 10-class training corpus was compiled, by putting together categories from 

ESC-50 named “breathing”, “coughing”, “sneezing”, “drinking, sipping”, and “laughing”, 
with other categories, namely “short_cough”, “long_cough”, and “voicefix” from SHC, 
as well as “wheezing” and “crackles”,  from IRS17, formed in a similar way to dataset 
ESC-50 (40 files per class). 

For this experiment we trained the auDeep and SoundNet-FT feature extractors on 
the complete special 10-class corpus. The feature extractors were next used to produce 
features from all files in IRS17 and SHC corpora, leaving the ESC-50 corpus aside. For 
each corpus-feature type pair, a standard MLP was trained, with 10 output units. The 
accuracy of the classifiers is presented in Table 3. 

 
Table 3 – Classification accuracy for extractors trained on a special 10-class corpus 

Corpus Samples 
(classes) 

Accuracy in [%] 
by feature type 

auDeep SoundNet-FT 
IRS17 6,898 (4) 54.3 64.5 
SHC 882 (3) 78.4 81.5 

 
The compilation of a special corpus was necessary to explore the discrimination 

power of features extracted from classes of sounds which are rather similar. As the results 
in Table 3 show clearly, the balance in structure between train and test corpora leads to 
results that are close to the native performance allowed by extracted feature vectors, as 
evaluated in [25] and [26]. 

 
4.3.4 Cough recognition with the proposed method 
Based on the exploration results from the experiments 4.3.1 to 4.3.3, we used the 

same 10-class dataset as in sub-section 4.3.3, in the training of a feature extractor for the 
method we proposed, and then conducted the cough recognition experiment which is 
described next. 



It should first be noted that the three experiments described above used feature 
vectors extracted with discriminative training on specific datasets, for which classifiers 
were tested on corpora very unbalanced, in terms of cough/non-cough classification. Any 
sound corpora with cough-related categories, such as the ESC-50 corpus, which has one 
cough category and 49 non-cough categories, can be used in training classifiers for 
cough/non-cough classification. However, cough recognizers based on features learned 
from ESC-50 will only be able to use about 2% of the information learned, because much 
of discrimination data is associated to sound pairs not connected to cough, which will 
never be used. 

The special 10-class corpus is better from this point of view, as the rate of learned 
information used, although computed differently for a different corpus structure, is 
expected to raise at roughly 30%. 

For cough recognition, two classes are formed from the files in the special 10-class 
corpus. The files from classes “coughing” (ESC-50), “short_cough” and “long_cough” 
categories (both from SHC), were set in the class “cough”, while all the other classes in 
the special corpus (“voicefix” from SHC, “wheezing” and “crackles” from IRS17, and 
“breathing”, “sneezing”, “drinking, sipping”, and “laughing” from ESC-50) were included 
in the class “non-cough”.  

The feature vectors we used in this experiment consist of feature vectors from the 
SoundNet and auDeep, combined as shown in Fig. 1, with both feature extractors trained 
on the 2-class corpus described in this subsection. During training, the class upsampling 
technique was used to achieve balance. A standard MLP classifier with 2 output units was 
trained for each corpus-feature type pair. The obtained accuracy is shown in Table 4. 

 
Table 4 – Cough recognition accuracy of the proposed method 

Corpus Examples 
(cough/non-cough) 

Accuracy 
[%] 

IRS17 6,818 (0/6,818) 86.6 
SHC 802 (457/345) 91.6 

 
According to the accuracy values in Table 4, corpora built on purpose for training 

feature extractors are better in adapting classifiers to real-life respiratory sounds. The 
86.6% accuracy on IRS17 is based more on correctly classifying the respiratory sounds, 
and less on recognition of cough sounds. A classifier with several types of cough and non-
cough classes can better discriminate target sound classes from non-target ones. 

The proposed method for cough sound recognition classifies sounds in “cough” and 
“non-cough” classes, which benefits from both the reduction in dataset perplexity (by 
allowing less non-target classes) and from the use of more discrimination information 
learned. The method combines the strengths of the two feature extractors used, as auDeep 
is more adaptable, while the SoundNet is more discriminative, and demonstrates a 91.6% 
accuracy, which qualifies as state-of-the-art performance.  
 

5. Conclusions and future work 
 

In this work, a classification method was proposed for cough sound recognition. Two 
DNN-based feature extractors were used: the auDeep [26], which learns from normalized 
log-mel-spectrograms of input audio, and the SoundNet [25], fine-tunable, which works 
on raw waveforms. Based on their concatenated features, extracted from a corpus 
assembled for maximized discriminative power, a MLP-type classifier was trained on a 
half and tested on the other half of the corpus. The accuracy figures in Table 4, obtained 
on the most non-cough corpus (IRS17) as well as on the most cough-like corpus (SHC), 



show that the proposed method is well suited for cough classification. On the other hand, 
classification accuracies in Tables 1 to Table 3 show that the method may be expanded 
progressively to other unseen patient sounds, in case of respiratory disease epidemics. 

The cough recognition accuracy of the proposed method overcomes the classification 
accuracy attained on corpus ESC-50 by the proponents of auDeep and SoundNet. No 
comparison was made to other systems, as most published research is based on scarce 
data, and offer results which are not comparable. 

The feature extractors and the final classifier can be retrained and fine-tuned on real 
world data, with an extensible number of classes. Classification performance was 
observed to depend on separability of sound sources in audio signals, which suggests the 
use of several audio recording channels, especially in cough sound monitoring methods. 

The real-world data corpora are made of all available data, except for some ground 
truth cases, left aside for method validation purposes. Problems with method validation 
are stated in most published literature because of the lack of data, which made the Leave 
One Out Cross-Validation (LOOCV) one of most often used validation methods. 
Performance measures obtained from cross-validation, especially those used for parameter 
tuning and model selection, can introduce high variance thus making the models 
unreliable. In epidemics, classifier validation must be based more on medical diagnostic 
data, and so the resolution of the problem must be postponed after the deployment stage.  

As a future work, we intend to simultaneously train the feature extractors to extract 
the most discriminative features for our classification task instead of separate stages, and 
standard MLP classifiers. Knowledge transfer from stills was also considered, not yet 
implemented, from images such as thermal forefront images, chest X-ray films, as well as 
3D head and chest models from Computerized Tomography (CT) or Magnetic Resonance 
Imaging (MRI) scans. 
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