
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 4, 2012, 301–318

Control Languages Associated
with Spiking Neural P Systems

Ajeesh RAMANUJAN, Kamala KRITHIVASAN

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai - 36

E-mail: ajeeshramanujan@gmail.com, kamala@iitm.ac.in

Abstract. We consider labeled spiking neural P systems, which are usual
spiking neural P systems with a label associated with every rule; the labels are
symbols of a given alphabet or can be λ (empty). The rules used in a transition
should have either the empty label or the same label from the chosen alphabet.
In this way, a string is associated with each halting computation, called the
control word of the computation. The set of all control words associated with
computations in a given spiking neural P system form the control language of
the system.

We study the family of control languages of spiking neural P systems in com-

parison with the families of finite, regular, context-free, context-sensitive, and

recursively enumerable languages. In the restricted case when in each step at

least one rule with a non-empty label is used, every regular language is a control

language, there are context-sensitive non-context-free languages of this type,

but not all context-free languages are control languages of a spiking neural P

system. All languages that are accepted by labeled spiking neural P systems

are context-sensitive. If transitions with all rules labeled with λ are allowed,

then each recursively enumerable language can be the control word of a spiking

neural P system.

1. Introduction

Spiking neural P systems (shortly called SN P systems) are distributed parallel
computing devices introduced in [1] as a class of membrane systems (also known
as P systems) [3, 2] inspired by the neurophysiological behavior of neurons sending
electrical impulses (spikes) along axons to other neurons. In SN P systems, the

302 A. Ramanujan, K. Krithivasan

neurons are placed in the nodes of a directed graph, called the synapse graph. Every
neuron may contain a number of copies of a single object called the spike (denoted
with a), and also a number of firing and forgetting rules. Firing rules allow a neuron
to send information to other neurons in the form of electrical impulses which are
accumulated at the target neurons. The application of each rule is determined by
checking the contents of the neuron against a regular expression associated with the
rule. In each step, if a neuron can use more than one rule, then one of them is non-
deterministically chosen and applied. Thus, the rules are used in a sequential manner
in each neuron, but neurons function in a parallel manner. More information about
the SN P systems can be found in the Handbook [4] and in the membrane computing
website [17].

SN P systems can be used as language generating devices in various ways – see,
e.g., [7, 8, 9, 10, 11]. In all these papers (and several others), words are associated
with the sequence of spikes emitted by the system (this sequence is called spike train),
that is only binary words are obtained.

In this paper, strings over arbitrary alphabets are obtained, in the form of control
words associated with computations in a spiking neural P system whose rules are
labeled. The label of a rule can either be a symbol in a given alphabet, or it can be
empty (denoted by λ). In each step, besides rules with label λ only rules with the
same non-empty label can be used (that is, a computation step is described either by
a symbol in the case when at least one rule has a non-empty label, or by λ, in the
case when all used rules have the empty label).

This idea was initially considered in [13] and then investigated in [14] for SN P
systems with anti-spikes. We continue here this study for the case when standard SN
P systems are used (without anti-spikes).

In some sense, we may assume that the control language associated with an SN
P system is accepted by this system. Specifically, a string over the label alphabet is
assumed to be placed in the environment of the system. This string is read from left
to right, one symbol at a single step, in the following sense: if an input symbol is
read, then in that computation step we can use only rules labeled with that symbol
or with λ; if no symbol is read (the “reading head” can remain still, not moving along
the input string), then only rules with the empty label can be used at that step.
The string is accepted if and only if the computation of the system reaches a final
configuration in the moment when the whole the string is read. (The use of a final
configuration is another new feature used in this paper.)

In what follows we will use this terminology, calling the control languages languages
accepted by SN P systems, in the sense specified above. Note however the essential
difference between this notion and the languages defined by accepting SN P systems,
in the “standard” sense – see references in [4].

The difference between the case when λ moves (when only rules with the empty
label are used) are allowed and the case when such moves are not allowed is essential:
in the former case all recursively enumerable languages are accepted, while in the
latter case only a subset of context-sensitive languages are accepted, without covering
the family of context-free languages.

The paper is organized as follows. In Section 2, we provide the necessary automata

Control Languages associated with Spiking Neural P Systems 303

theory prerequisites. In Section 3, we give the definition of an SN P system as
introduced in [1]. In Section 4 we introduce and define the labeled SN P systems and
their control/accepted languages. In Section 5, we study the families of languages
accepted by labeled SN P systems.

2. Basic Definition

In this section we give some definitions and notations related to automata theory.

Let Σ be a finite set of symbols called an alphabet. A string w over Σ is a sequence
of symbols from Σ. λ denotes the empty string. The set of all strings over Σ is denoted
by Σ∗. The length of a string w ∈ Σ∗ is denoted by |w|. A language L over Σ is a
set of strings over Σ. The family of finite, regular, context-free, context-sensitive,
and recursively enumerable languages are denoted by FIN,REG,CF,CS, and RE
respectively.

The regular expressions over a given alphabet Σ are defined as follows: (i) ∅, λ,
and each a ∈ Σ are regular expressions representing the regular sets ∅, {λ}, and
{a} respectively; (ii) if E1 and E2 are regular expressions over Σ representing the
regular sets R1 and R2, then E1 + E2, E1E2, and E∗

1 are regular expressions over Σ
representing the regular sets R1 ∪ R2, R1R2, and R∗

1 respectively, and (iii) nothing
else is a regular expression over Σ. With each regular expression E, we associate a
language L(E); such a language is said to be regular.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction halt), and I is the set of
instructions labeled in a one-to-one manner by the labels from H. The instructions
are of the following forms:

– li : (ADD(r), lj) (add 1 to register r and then go to the instruction with label
lj),

– li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label lj , otherwise go to the instruction with label lk),

– lh : HALT (the halt instruction).

A register machine M accepts a number n in the following way: we start with
number n in a specified register r0 and all other registers being empty (i.e., storing
the number 0), we first apply the instruction with label l0 and we proceed to apply
instructions as indicated by the labels (and made possible by the contents of the
registers); if we reach the halt instruction, then the number n is said to be accepted
by M. The set of all numbers accepted by M is denoted by N(M). It is known (see,
e.g., [12]) that register machines (even with only three registers, but this detail is not
relevant in what follows) accept all sets of numbers which are Turing computable.

In this paper all the vectors are row vectors and written in boldface letter. The
jth component of a vector u is denoted by uj.

304 A. Ramanujan, K. Krithivasan

3. Spiking Neural P Systems (SN P systems)

In this section we give the definition of an SN P system as introduced in [1].

Definition 1. An SN P system of degree m ≥ 1 is a construct of the form
Π = (O, σ1, σ2, · · · , σm, syn, in, out), where:

1. O = {a} is the alphabet. a is called the spike;

2. σ1, σ2, · · · , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where

(a) ni ≥ 0 is the initial number of spikes contained in the neuron σi;

(b) Ri is a finite set of rules of the forms:

i. (firing rules) E/ac → a; d, where E is a regular expression over O, and
c ≥ 1, d ≥ 0 are integer numbers;

ii. (forgetting rules) as → λ, for some s ≥ 1, with the restriction that
as ̸∈ L(E) for any rule E/ar → a; d, of type (i) from Ri :

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} with (i, i) ̸∈ syn for 1 ≤ i ≤ m;

4. out ∈ {1, 2, · · · ,m} indicates the output neuron.

A firing rule E/ac → a; d ∈ Ri, can be applied in neuron σi if it contains k ≥ c
spikes, and ak ∈ L(E). The application of this rule removes c spikes from σi (thus
leaving k − c spikes), and prepares one spike to be delivered to all the neurons σj

such that (i, j) ∈ syn. If d = 0, the the spike is immediately emitted, otherwise it
is emitted after d steps. During these d steps, the neuron is closed, and it cannot
receive new spikes (if a neuron has a synapse to a closed neuron and tries to send a
spike along it, then that particular spike is lost), and cannot fire. A forgetting rule
as → λ can be applied in neuron σi if it contains exactly s spikes. The application of
this rule simply removes s spikes from σi.

A generalization of SN P systems known as extended spiking neural P systems
(ESN P system) is introduced in [10]; in these systems the rules are of the form
E/ac → ap; d, p ≥ 0, p ≤ r. Such a rule operates in the same manner as before except
that after firing it sends p spikes along each outgoing synapse. When p = 1, the
extended rules reduce to the standard rules and p = 0 is a special case of forgetting
rules.

Rules with delay zero are written in the form E/ac → a. A neuron is bounded if
in every firing rule E/aj → a; d,E denotes a finite regular expression, i.e., all firing
rules are of the form ai/aj → a; d, where 1 ≤ j ≤ i. An SN P system is bounded if
all the neurons in the system are bounded.

A configuration of an SN P system Π = (O, σ1, σ2, · · · , σm, syn, in, out) is a tuple
c = (n1/d1, n2/d2, · · · , nm/dm), where ni ∈ Z+, 1 ≤ i ≤ m, denotes the number of
spikes in neuron i and di ∈ Z+, 1 ≤ i ≤ m, denotes the delay, i.e., the number of steps
until each neuron will be open again. In each time unit (a global clock is assumed),
each neuron which can apply at least one rule, has to non-deterministically choose one
and apply it. The neurons evolve in parallel, synchronously. Using the rules in this

Control Languages associated with Spiking Neural P Systems 305

way, we can define transitions among the configurations. Any sequence of transitions
starting from the initial configuration is called a computation. A computation halts if
it reaches a configuration where no rule can be applied. The output neuron also sends
spikes to the environment. A binary string is associated with a halting computation
in the following way: if in a time unit a spike is emitted by σout, then we write 1;
if no spike is emitted by σout, then we write 0. This binary string is also called the
spike train of Π. Various numbers can be associated with a spike train, or it can
be considered as a string generated by the system. (If an input neuron σin is also
considered, then an SN P system can be used in the accepting mode: a spike train
is introduced in σin, symbol by symbol, and this string is accepted if and only if the
computation halts after reading all the string. We will not consider here this kind of
accepting systems, but we will deal with control words associated with computations,
and we will call such words as being “accepted”.)

4. Labeled Spiking Neural P System(LSN P System)

In this section we define the types of SN P systems we investigate in this paper,
i.e., the labeled SN P systems.

Consider an SN P system Π = ({a}, σ1, σ2, · · · , σm, syn, in, out) with m neurons.
Assume a total ordering of the neurons. Let the total number of rules be n. Assume
a total ordering d1, d2, · · · , dn of the rules of Π in such a way that the rules in the
same neuron are given consecutive numbers. Let R = {d1, d2, · · · , dn} and Σ be a
finite alphabet. Consider a function l : R → Σ ∪ {λ}, called the labeling function,
that assigns a label to every rule in R.

With every rule di, 1 ≤ i ≤ n, we associate a vector called modification vector
denoted by mdi

∈ Zm which denotes the change in the number of spikes in each
neuron on the application of the rule di. For example consider a rule dk : a → a in
neuron l. The modification vector corresponding to dk,mdk

is vector with a -1 as
its lth component since it takes one spike from neuron l, 1 in the ith component for
every i such that (l, i) ∈ syn since the application of the rule transfers one spike to
every other neuron connected to it and 0 elsewhere. This is for a rule with zero delay.
See [16] for handling modification vectors for rules with nonzero delay.

Definition 2. A labeled SN P system, in short, an LSN P system, is a construct
N = (Π,Σ, F, l), where

1. Π is an SN P system,

2. Σ is finite alphabet (the input alphabet),

3. F is a finite set of configurations (called final),

4. l is a labeling function.

With such a system, we associate a language as follows.
Given a configuration (n1, n2, · · · , nm) of Π and a symbol b ∈ Σ, we define a tran-

sition relation ⇒ on configurations as follows: (n1, n2, · · · , nm)
b⇒ (n′

1, n
′
2, · · · , n′

m),

306 A. Ramanujan, K. Krithivasan

if there exists a set of rules di1 , di2 , · · · , dij , 1 ≤ ij ≤ n, 1 ≤ j ≤ m, l(dij) is either b
or λ, i.e. we use only rules with the same label b and rules labeled with λ (we say
that the transitions are label restricted), with modification vectors mdk

, 1 ≤ k ≤ ij

and n′
l = nl +

ij∑
l=1

(mdk
)
l
.

In a label restricted transition, we say that the symbol b is an input symbol, and
it is “consumed” if at least one rule with label b is used. If all the used rules have the
label λ, then the input symbol is not consumed.

A string of input symbols (over Σ) is said to be accepted if all its symbols are
consumed and Π reaches a configuration in the set F .

The set of all strings accepted in this way by computations in as LSN P system N
is denoted by Lλ(N). The subscript indicates the fact that λ steps (all rules applied
in one step can have λ labels) are permitted. When only steps where at least one rule
with a non-empty label is used, the accepted language is denoted by L(N).

The family of languages L(N) associated with LSN P systems N with at most m
neurons is denoted by LLSNPm. In the unrestricted case, the corresponding language
family is denoted by LλLSNPm. If the number of neurons is unbounded, then the
subscriptm is replaced with ∗. If the SN P system is an ESN P system, the superscript
e is added, thus obtaining the families LeLSNPm, Le

λLSNPm, respectively.

Note that in LSN P systems the input and the output neuron plays no role, hence
they are omitted. Moreover, whenever possible, we associate directly the labels to
rules, writing b : E/ac → ap; d instead of writing l(E/ac → ap; d) = b.

We also use the convention that two language processing devices – generating or
accepting – are equivalent if they characterize languages which differ at most in the
empty string (otherwise stated, the string λ is ignored when comparing two language
processing devices).

4.1. The Working of an LSN P System

We can imagine that the input string is placed on an “input tape” in the envi-
ronment. The string is accessible to all the neurons in the system. There is an input
pointer which points to the current symbol to be read. The input pointer is allowed
to move only from left to right. The symbol read is available to all the neurons in the
system.

Given a string w = b1b2 · · · bk ∈ Σ∗, an LSN P system processes the string w as
follows: It starts from an initial configuration, scans the input string from left to right,
symbol by symbol, and moves from one configuration to another one by selecting the
rules according to the labeling function. Each neuron can apply a rule labeled with
the current input symbol if possible. If a neuron has no rules labeled with the current
input symbol, it can use a λ labeled rule, if such a rule is applicable. This process is
continued until the string is processed completely. If during a computation step only
rules with λ labels are used, then no input symbol will be consumed and the symbol
pointed by the input pointer will be available for use in the next step. This is possible
only in the unrestricted case. The LSN P system N = (Π,Σ, F, l) accepts the string

Control Languages associated with Spiking Neural P Systems 307

w if there exists a computation c0β1c1β2 · · ·βkcf with cf ∈ F and l(β1β2 · · ·βk) = w.
We illustrate the previous discussion with an example.

Example 1. Consider the context-free non-regular language L1 = {bncn | n ≥
1} ∪ {c}. We define an LSN P system N1 = (Π1, {b, c}, (2, 2, 0, 0), l) accepting L1 as
follows:

Π1 = ({a}, σ1, σ2, σ3, σ4, syn) with:

σ1 = (1, {b : a → a}),
σ2 = (1, {b : a → a}),
σ3 = (0, {c : a∗/a → a}),
σ4 = (1, {c : a → a}),
syn = {(1, 2), (2, 1), (2, 3), (4, 1), (4, 2)}.

The LSN P system N1 is diagrammatically shown in Figure 1.

b : a → ab : a → a c : a∗/a → a

c : a → a

1 2 3

4

a a

a

input tape

Fig. 1. An LSN P system accepting {bncn | n ≥ 1} ∪ {c}.

The system N1 processes an input string bbcc as follows: The system starts in the
initial configuration (1, 1, 0, 1) and the current input symbol is b. The system uses the
rule in σ1 and σ2, sending one spike to σ2, σ1 and σ3. We cannot use the rule in σ3

since the label of the rule is c and the current input symbol is b. So after processing
the first b, the system reaches the configuration (1, 1, 1, 1) and the input pointer points
to the next symbol. On seeing the second b, the system uses the rule in σ1 and σ2,
sending one spike to σ2, σ1 and σ3 and the system reaches the configuration (1, 1, 2, 1).
Again the system cannot use the rule in σ3. On seeing the first c, the system uses
the rule in σ3 and σ4 sending one spike to neurons σ1 and σ2 from σ4 and the spike
send from the neuron σ3 goes to the environment. The system cannot use any rule
in σ1 and σ2 during this step since the rule in those neurons are labeled with b and
the current input symbol is c. So after processing the first c, the system reaches the
configuration (2, 2, 1, 0) and the input pointer points to the next symbol. The next
input symbol c is processed in the same way the first c is processed during the third
step and after processing the second c the system reaches the configuration (2, 2, 0, 0).
The string is processed completely and since the system is in a final configuration the

308 A. Ramanujan, K. Krithivasan

input string is accepted by the system. We can see that, if the string is not of the
form bncm with n = m, the system is not able to apply any rule, hence is not able to
reach the final configuration.

We can easily see that the system accepts the language {bncn | n ≥ 1} ∪ {c}.

5. The Power of LSN P Systems

In this section we investigate the relationship between the family of languages
accepted by LSN P systems and the families of finite, regular, context-free, context-
sensitive, and recursively enumerable languages.

Theorem 1. FIN ⊂ LLSNP1.

Proof. Let L ∈ FIN. Let L = {w1, w2, · · · , wk}. Let li = |wi| and l = l1 + l2 +

· · ·+ lk. Let wi = bi1bi2 · · · bili . Define a function f(bij) =
∑i−1

r=1 lr + j that injectively
maps the jth symbol of the ith string to an integer between 1 and l. We construct an
LSN P system N = (Π,Σ, F, l) accepting L with one neuron as follows:

Π = ({a}, σ1, syn) with:

σ1 = (al+1, {bi1 : al+1/al−f(bili)+1 → a | 1 ≤ i < k}
∪ {bk1 : al+1/a → a}
∪ {bij : am/a → a | 1 ≤ i ≤ k, 2 ≤ j ≤ li, f(bi1) + li − j + 1 = m}),

F = {(f(bi1) | 1 ≤ i ≤ k}. �

The system starts in the initial configuration al+1. Suppose that the ith string,
say wi = bi1bi2 · · · bip ∈ L, is given as input. On seeing the first symbol bi1, the system
uses a rule of the type al+1/al−f(bip)+1 → λ labeled with bi1 removing f(bip) spikes
from the system. If the last string is given as input, then the rule al+1/a → λ labeled
with bk1 is used leaving al spikes in the system. The system cannot use any rule of
these type from the next step onwards. From the next step onwards, the system uses
the other type of rules, whose labels match the next symbols in the input string. When
the system processes the string completely, it reaches a final configuration af(bi1). No
further rule can be applied and hence the system halts and accepts the input string.

At the price of using arbitrarily many neurons, all regular languages can be ac-
cepted.

Theorem 2. REG ⊂ LLSNP∗.

Proof. Let L ∈ REG. Let D = (Q,Σ, δ, i0, FD) be a deterministic finite automaton
accepting L. Let p be the number of states in D. Rename the states as qi, 1 ≤ i ≤ p,
such that qp = i0 and redefine the transition rules using the renamed states. Using
the modified D we construct an LSN P system N = (Π,Σ, F, l) as follows:

Π = ({a}, σ1, σ2, · · · , σp, σp+1, syn) with:

σi = (2, Ri), 1 ≤ i ≤ p, where
Ri = {λ : a2/a → a},

Control Languages associated with Spiking Neural P Systems 309

σp+1 = (3p,Rp+1), where
Rp+1 = {b : a2p+i/ap+i−j → a | (qi, b, qj) ∈ δ},
syn = {(i, p+ 1), (p+ 1, i) | 1 ≤ i ≤ p}.

F is defined as follows: for every qj ∈ FD add (2, 2, · · · , 2, 2p+ j) to F . �

The SN P system constructed above is shown in Figure 2.

a3p

b : a2p+i/ap+i−j
→ a, (qi, b, qj) ∈ δ

a2

λ : a2/a → a

a2

λ : a2/a → a

a2

λ : a2/a → a

a2

λ : a2/a → a
. . .

1 2 p− 1 p

p+ 1

Fig. 2. DFA to LSN P system construction.

The LSN P system N works as follows: It starts in the initial configuration
(2, 2, · · · , 2, 3p.)

The neuron σp+1 fires in the first step by a rule a2p−j → a labeled by the first
symbol in the input string, associated with the transition rule (qv, b, qj) in δ and
receives p spikes from its neighboring p neurons. During this step, the first symbol
in the input string is consumed and the input pointer advances to the next symbol.
The neurons σ1 to σp are meant to continuously load the neuron σp+1 with p spikes.
Assume that in some step t, the rule a2p+i/ap+i−j → a labeled with the t-th symbol in
the input string for (qi, b, qj) ∈ δ is used for some 1 ≤ i ≤ p and p spikes are received
from other neurons. Then p + i − j spikes are consumed and p + j spikes remain
in the neuron σp+1. Then in the step t + 1, we have 2p + j spikes in neuron σp+1

and a transition rule (qj , b, ql) can be used if the next input symbol is b. In this step,
the neuron σp+1 receives p spikes from its neighboring neurons and the input symbol
that corresponds to the label of the used rule will be consumed and the input pointer
advances. In this way the computation proceeds until the input string is processed
completely. No further rules can be applied and the computation halts. When the
computation halts, the neuron σp+1 contain 2p + k, 1 ≤ k ≤ p, spikes and all other
neurons contains two spikes each. If k = i, 1 ≤ i ≤ p, for some qi ∈ F the string will
be accepted. Therefore, L(N) = L(D).

We illustrate the above construction with an example.

Example 2. Consider a DFA D1 = ({q1, q2, q3, q4}, {b, c}, δ, q4, {q4}), where δ =
= {(q4, c, q2), (q4, b, q1), (q2, c, q2), (q2, b, q3), (q3, b, q3), (q3, c, q2), (q1, b, q3), (q1, c, q4)}
which accepts the set of all strings over {b, c} in the form (bc)n, n ≥ 0. We construct
an LSN P system N = (Π4, {b, c}, {(2, 2, 2, 2, 12), l) accepting L(D1) as follows:

Π4 = ({a}, σ1, σ2, σ3, σ4, σ5, syn), with

310 A. Ramanujan, K. Krithivasan

σ1 = (2, {λ : a2/a → a}),
σ2 = (2, {λ : a2/a → a}),
σ3 = (2, {λ : a2/a → a}),
σ4 = (2, {λ : a2/a → a}),
σ5 = (12, {c : a12/a6 → a, b : a12/a7 → a,
b : a9/a2 → a, c : a9/a → a, c : a10/a4 → a, b : a10/a3 → a,
b : a11/a4 → a, c : a11/a5 → a}),
syn = {(1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4)}.

The SN P system Π4 constructed starting from the DFA D1 is shown in Figure 3.

12

a2

λ : a2/a → a

a2

λ : a2/a → a

a2

λ : a2/a → a

a2

λ : a2/a → a

1

2

3

4

5

DFA D1 accepting strings over {b, c}∗ of the form (bc)n, n ≥ 0.

q4 q1

q2 q3

b

c

c b

c

b

c

b

c : a12/a6 → a

b : a12/a7 → a

b : a9/a2 → a

c : a9/a → a
c : a10/a4 → a
b : a10/a3 → a
b : a11/a4 → a

c : a11/a5 → a

Fig. 3. The LSN P system constructed starting from the DFA D1.

The LSN P system N works as follows: The system starts in the initial configu-
ration (2, 2, 2, 2, 12).

The SN P system Π4 accepts the string bcbc ∈ L(D1) as follows: Initially, σ5

contains 12 spikes and neurons σ1 through σ4 contains two spikes. The first b is
processed by the system using the b labeled rule b : a12/a7 → a in σ5 and λ labeled

Control Languages associated with Spiking Neural P Systems 311

rules in other neurons. Using those rules one spike is sent to σ1 through σ4 from
σ5 and σ5 also receives a total of four spikes from its neighbors. After this step σ5

contains nine spikes. The system reaches the configuration (2, 2, 2, 2, 9). In the next
step, the first c is processed by using the c labeled rule c : a9/a → a in σ5 and λ
labeled rules in other neurons. Using those rules one spike is sent to σ1 through σ4

from σ5 and σ5 also receives a total of four spikes from its neighbors. After this
step σ5 contains twelve spikes. The system reaches the configuration (2, 2, 2, 2, 12).
The next b and c are processed exactly in the same manner in which the system
processed the first b and c. After processing the whole string, the system reaches the
final configuration (2, 2, 2, 2, 12). Since the input string is processed completely and
since the system is in the final configuration the string is accepted by the system.

If the input string is bbc, we can easily see that after processing the string com-
pletely, the system reaches a configuration (2, 2, 2, 2, 10), which is not a final one. So
the string bbc is not accepted by the system.

From the construction of Theorem 2, we can see that all the neurons are bounded.
The number of neurons used in this theorem is not bounded. A bound can be

obtained if we use extended rules. Specifically, four neurons are enough; to prove
this, we use a construction from [15].

Theorem 3. REG ⊂ LeLSNP4.

Proof. Let L ∈ REG. Let D = (Q,Σ, δ, i0, FD) be a deterministic finite automaton
accepting L. Let p be the number of states in D. Rename the states as qi, 1 ≤ i ≤ p,
such that qp = i0 and redefine the transition rules using the renamed states. Using
the modified D we construct an LSN P system N = (Π,Σ, F, l) with four neurons as
follows:

Π = ({a}, σ1, σ2, σ3, σ4, syn) with:

σ1 = (a3p, {b : a2p+i → aj | (qi, b, qj) ∈ δ}),
σ2 = (0, {b : a2p+i → aj | (qi, b, qj) ∈ δ}),
σ3 = (a3p, {λ : a2p+i → a2p, 1 ≤ i ≤ p}),
σ4 = (0, {λ : a2p+i → a2p, 1 ≤ i ≤ p}),
syn = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3)}.

F is defined as follows: for every qj ∈ FD add (2p + j, 0, 2p + j, 0), (0, 2p +
j, 0, 2p+ j) to F . �

The above SN P system is shown in Figure 4.
The task of checking that L(D) = L(N) is left to the reader.
We illustrate the construction in Theorem 3 by constructing an LSN P system

accepting the language {(bc)n | n ≥ 0} from Example 2; the system is shown in
Figure 5, and it works as follows: The system starts in the initial configuration
(12, 0, 12, 0). The final configuration is (12, 0, 12, 0). Non-empty strings are accepted
by firing the rule labeled with the current input symbol in σ1, σ3 and σ2, σ4 in alternate
steps of the computation; when the string is processed completely, the the system
reaches the final configuration (12, 0, 12, 0).

312 A. Ramanujan, K. Krithivasan

a3p

a3p

b : a2p+i → aj , (qi, b, qj) ∈ δ

b : a2p+i → aj , (qi, b, qj) ∈ δ

λ : a2p+i → a2p, 1 ≤ i ≤ p

λ : a2p+i → a2p, 1 ≤ i ≤ p

1

2 3

4

Fig. 4. DFA to LSN P system construction (Theorem 3).

a12

1

2

4

3

a12

λ : a8+i → a8, 1 ≤ i ≤ 4

λ : a8+i → a8, 1 ≤ i ≤ 4

b : a12 → a

c : a12 → a2

b : a10 → a3

c : a10 → a2

c : a11 → a2

b : a11 → a3

c : a9 → a4

b : a9 → a3

b : a12 → a

c : a12 → a2

b : a10 → a3

c : a10 → a2

c : a11 → a2

b : a11 → a3

c : a9 → a4

b : a9 → a3

Fig. 5. The LSN P system constructed form the DFA D1

in Example 2 corresponding to Theorem 3.

Theorem 4. (CF −REG) ∩ LLSNP∗ ̸= ∅.
Proof. In Example 1, we have shown that the non-regular context-free language

{bncn | n ≥ 1} ∪ {c} is in LLSNP∗. �

Control Languages associated with Spiking Neural P Systems 313

Theorem 5. CF − LLSNP∗ ̸= ∅.

Proof. Consider the context-free language L = {wwR | w ∈ {b, c}∗}. (xR is the
reversal/mirror image of the string x.) Assume that there exists an LSN P system
N with m neurons and n rules that accepts L. Consider a string uuR ∈ L and let l
be the length of u. After reading l symbols of u, N must be able to reach as many
different configurations as there are strings of length l. This must hold since N has
to remember the first half of the string uuR in order to compare it with the second
half. Since the alphabet size is two (the argument is applicable to any finite alphabet
of cardinality greater than 1), N has to reach at least 2l different configurations after
reading l symbols. If N cannot reach that many configurations, there are two different
strings u and u′, that leads N to the same configuration. Then, if N accepts uuR, it
will accept also u′uR, which is not in L, a contradiction. So it is required to prove
that for sufficiently large l, only less than 2l configurations are reachable. The proof
is as follows: Firing of each rule dj modifies the configuration by adding a vector
vj ∈ {0, 1,−r}m since the rules are of the form ar → a or ar → λ. Suppose that the
rule di, 1 ≤ i ≤ n, is fired ki, 1 ≤ i ≤ n, times during the whole firing sequence. The
configuration of the labeled spiking neural P system gets modified to the configuration

c0 +
n∑

i=1

ki.vi where
∑
i

ki = l. Hence with n rules we can reach at most as many

configurations as there are such tuples (k1, k2, · · · , kn). These n numbers add exactly
up to l and therefore 0 ≤ ki ≤ l for all i ∈ {1, 2, · · · , n}. So there are at most
(l + 1)n such tuples. Therefore, for sufficiently large l there are less than 2l different
configurations that are reachable by a spiking neural P system that generates L. This
concludes the proof. �

Theorem 6. LLSNP∗ − CF ̸= ∅.

Proof. Consider the context-sensitive language L2 = {bnw | n ≥ 1, w ∈ {c, d}∗, nc(w) =
nd(w) = n}. (nc(w) denotes the number of c’s in the string w.) We define an LSN P
system N2 = (Π1, {b, c, d}, (0, 0, 0, 0, 0, 0), l) accepting L2 as follows:

Π1 = ({a}, σ1, σ2, σ3, σ4, σ5, σ6, syn) with,

σ1 = (1, {b : a → a, λ : a2 → λ}),
σ2 = (1, {b : a → a, λ : a2 → λ}),
σ3 = (0, {c : a∗/a → a}),
σ4 = (0, {d : a∗/a → a}),
σ5 = (1, {d : a → a, λ : a2 → λ}),
σ6 = (1, {c : a → a, λ : a2 → λ}),
syn = {(1, 2), (2, 1), (2, 3), (2, 4), (5, 1), (5, 2), (5, 6), (6, 1), (6, 2), (6, 5)}.

We can see that L(N2) = L2 a context-sensitive language which is not context-free.
The LSN P system N2 is diagrammatically shown in Figure 6. The fact that it accepts
the mentioned language is left to the reader. �

314 A. Ramanujan, K. Krithivasan

1 2

a a

b : a → a

λ : a2 → λ

b : a → a

λ : a2 → λ

6

c : a → a

5 4

d : a∗/a → a

a

λ : a2 → λ

a

d : a → a

λ : a2 → λ

3

c : a∗/a → a

Fig. 6. An LSN P system accepting {bnw | n ≥ 1, w ∈ {c, d}∗, nc(w) = nd(w) = n}.

Theorem 7. LLSNP∗ ⊂ CS.

Proof. We show how to recognize a string accepted by an LSN P system with a
linear bounded automata. In order to do this, we simulate the computation of the LSN
P system by remembering the number of spikes in each neuron after the processing
of each symbol in the input string and show that the total number of spikes in the
system is linear with respect to the length of the control word.

Consider a language L accepted by an LSN P system N. Let w = b1b2 · · · bk, k ≥ 0
be a string in L. Let the number of neurons be m and the number of rules be n. We
build a multi track non-deterministic LBA B which simulates N. In order for B to
simulate N, it has to keep track of the number of spikes in each neuron after reading
each input symbol. So B’s input tape has m + 1 tracks. Track 1 holds the input.
Tracks 2 to m + 1 hold number of spikes in the neurons. Since B is an LBA, we need
to show that the number of spikes in each neuron is bounded linearly with respect to
the length of the input string. Consider a neuron, say σi and let ni be the number of
spikes initially contained in it. Let S = d11d12 · · · d1i1d21d22 · · · d2i2 · · · dk1dk2 · · · dkik

be a label sequence corresponding to w. di1di2 · · · dij is the set of rules applied in
the ith step. The labels of these rules are either bi or λ and at least one of the
labels is bi. Thus in the label sequence S, the sub-sequence dj1dj2 · · · djij , 1 ≤ j ≤ k,

corresponds to the symbol bj of the input string. Consider a sub-sequence in S having
the maximum length and let the length be l. We can see that l is always less than
or equal to m, because in a particular step of computation, only one rule in every
neuron can be applied. So in a step of computation, the total number of spikes in the
neurons σi can be at most ni+(m−1). We can also see that the number of steps in the
computation has the same length as the input string. So the total number of spikes in
the system after the computation is less than or equal to

∑m
i=1 ni+k×(m−1), which is

linear in the length of the input string. So the accepted language is context-sensitive.
�

Theorem 8. LλLSNP∗ = RE.

Proof. We follow the same idea as in the proof of Theorem 9 form [11].

Control Languages associated with Spiking Neural P Systems 315

The inclusion LλLSNP∗ ⊂ RE follows from Church-Turing hypothesis.
The proof of the inclusion RE ⊂ LλLSNP∗ is as follows:
Let L ⊆ Σ∗ be a recursively enumerable language. Let Σ = {b1, b2, · · · , bl}. Define

an encoding e : Σ 7→ {1, 2, · · · , l} such that e(bi) = i. We extend the encoding for a
string w = c1c2 · · · ck as follows: e(w) = c1 ∗ (l+1)(k−1) + · · ·+ c(k−1) ∗ (l+1)1 + ck ∗
(l + 1)0. We use l + 1 as the base in order to avoid the digit 0 at the left end of the
string.

For any L, there exists a deterministic register machine M which halts after pro-
cessing the input i0 placed in its input register if and only if i0 = e(w) for some
w ∈ L.

We use a special symbol $ which is not an element of the input alphabet to mark
the end of the input string. So when the computation starts, we place the string w$
delimited by the special symbol in the environment.

We construct an SN P system Π performing the following operations (σc0 and σc1

are two distinguished neurons of Π, where initially σc0 and σc1 contains 0 spike). In
the register machine, 2n spikes contained in a register neuron represent the number
n, so 2e(w) spikes are going to be generated by M0 and loaded into M.

1. For some 1 ≤ i ≤ l, processing an input symbol bi ∈ Σ introduces the number i
in σc0 . A number i is represented in a neuron by storing 2i spikes. This task is
done by introducing 2i spikes in σc0 .

2. Multiply the number stored in σc1 by l + 1, then add the number from σc0 .
So, if σc0 contains 2i spikes and σc1 contains 2j, j ≥ 0 spikes, we end up with
2(j(l+1)+ i) spikes in σc1 and no spike in σc0 . This task is done by simulating
a register machine M0 which does the multiplication by l + 1 to the content of
σc1 and adding a number between 1 and l.

3. Repeat from step 1, until the input string is processed completely and when
finished go to the next step.

4. σc1 contains a number of spikes equal to e(w) for the input string w ∈ Σ+. We
now start to simulate the working of the register machine M in recognizing the
number e(w). If the machine halts, then w ∈ L, otherwise the machine goes into
an infinite loop.

We are not giving the detailed construction of the SN P system Π. We relay on the
fact that a register machine can be simulated by an SN P system as shown in [1]. The
overall appearance of Π is given in Figure 7, where M0 indicates the subsystem cor-
responding to the simulation of the register machine M0 = (m0, H0, l0,0, lh,0, I0) and
M indicates the subsystem which simulates the register machine M = (m,H, l0, lh, I)
and H0 ∩H = ∅.

The final configuration of the system is a row vector with size equal to the total
number of neurons in the system i.e., (11 + m0 + m − 1 (since σc1 is shared) +3 ∗
number of ADD instructions + 3 ∗ number of SUB instructions for machine M0 + 5 ∗
number of SUB instructions for machine M) whose components are zero.

316 A. Ramanujan, K. Krithivasan

M0

c0 l0,0 lh,0

c1

M
lh

l0

λ : a → a; 0

λ : a → a; 0 λ : a → a; 0

a a

λ : a → a; 0

λ : a2 → λ

λ : a → a; 0

λ : a2 → λ

a

bi : a → a; e(bi)− 1, 1 ≤ i ≤ l

λ : a → a; 0

λ : a → a; 0

1

2 3
4 5

6 7

8

λ : a → a; 0 λ : a → a; 0

9

10 11

$: a → a; 0

a

$: a → λ; 0

λ : a2 → a; 0

Fig. 7. The structure of the SN P system from the proof of Theorem 8.

We start with one spike in σ1, σ2, σ3 and two spikes in σc1 . So in the first step σ1, σ2

and σ3 spike. As long as σ2 and σ3 do not receive a spike from σ1, they spike and send
a spike to each other and two spikes to σc0 . Using a rule bi : a → a; e(bi)−1, 1 ≤ i ≤ l
in σ1, consumes the input symbol bi pointed by the input pointer and the input pointer
advances to the next symbol in the input string and causes a spike to be transferred
from σ1 to σ2, σ3, σ4 and σ5 after a delay of e(bi) − 1 and this causes σ2 and σ3 to
stop working and σ4 and σ5 to load two spikes to σl0,0 thereby starting the simulation
of the register machine M0. The subsystem corresponding to the register machine M0

starts to work, multiplying the value contained in σc1 with l+ 1 and adding i. When
this process halts, σlh,0

is activated (this neuron will get two spikes in the end of
computation and will spike), and one spike is sent to σ8. In σ8, the system uses the
first rule if it do not see the end-marker there by sending one spike to each of σ1, σ2

and σ3, so the processing of the input string can be resumed. When the system sees
the input end-marker i.e. the input string is processed completely, it uses the second
rule in σ8 to get rid of the spike in σ8 and at the same time the system uses the rule
in σ9 sending one spike to σ10 and σ11, and they activate σl0 by sending two spikes
to it, thus starting the simulation of the register machine M. If the register machine
M halts on the input then the neuron σlh , that correspond to the label of the halt
instruction receives two spikes at the end of the computation. In the next step, the
system uses the λ labeled rule λ : a2 → a; 0 in σlh , getting rid of the spikes in σlh . All

Control Languages associated with Spiking Neural P Systems 317

the neurons in the system do not have any spike, and since the system is in the final
configuration, the string w is accepted by the system.

For the construction of modules M and M0 we refer to [11]; all rules are labeled
with λ. �

6. Conclusion

In this paper we investigated the control words associated with computations of
spiking neural P systems. An accepting style was adopted: each step of a computation
“consumes” a symbol of an “input” string and the string is accepted when it is
completely read and the system reaches a final state. To this aim, labels are associated
with the rules of an SN P system, which are symbols of a given alphabet or they are
empty. In each transition, only rules with the same label or with the empty label are
used. Also λ moves are possible, when no symbol of the input string is read and all
used rules have the empty label.

The families of languages accepted in this way are compared with the families
of the Chomsky hierarchy. In the case when λ moves are allowed, all recursively
enumerable languages can be obtained in this way, in the opposite case all accepted
languages are context-sensitive, all regular languages are covered, not all context-free
languages, but there are non-context-free context-sensitive languages which can be
obtained as control languages of SN P systems.

Several research issues remain to be considered. First, we mention the question
whether or not the use of final configurations in defining successful computations
makes any difference, or the usual halting condition is sufficient. Then, a systematic
comparison of families of languages accepted by various classes of SN P systems should
be done (remember that we have standard SN P systems, extended, with or without
delay, with or without forgetting rules, synchronous and asynchronous and so on).

A technical question is whether the result in Theorem 8 can be obtained also
without using the delay feature (note that in all other theorems, the delay plays no
role). We feel that the delay can be avoided.

Finally, we mention the natural issue of extending this way of associating a lan-
guage with a P system to other classes of P systems, different from SN P systems.

References

[1] Ionescu M., Păun Gh., Yokomori T., Spiking neural P systems, Fundamenta Infor-
maticae, 71, 2–3, pp. 279–308, 2006.

[2] Păun Gh., Computing with membranes, Journal of Computer and System Science,
61(1), pp. 108–143, 2000.

[3] Păun Gh., Membrane Computing – An Introduction, Springer-Verlag, Berlin, 2002.

[4] Păun Gh., Rozenberg G., Salomaa A., eds., The Oxford Handbook of Membrane
Computing, Oxford Univ. Press, 2010.

[5] Pan L., Păun Gh., Spiking neural P systems with anti-spikes, Int. J. of Computers,
Communications and Control, 4, pp. 273–282, 2009.

318 A. Ramanujan, K. Krithivasan

[6] Ibarra O. H., Woodworth S., Characterizations of some classes of spiking neural P
systems, Nat. Comput., 7, pp. 499–517, 2008.

[7] Ibarra O. H., Woodworth S., Characterizing regular languages by spiking neural P
systems, Int. J. of Foundations of Computer Science, 18(6), pp. 1247–1256, 2007.

[8] Krithivasan K., Metta V. P., Garg D., On string languages generated by spiking
neural P systems with anti-spikes, Int. J. of Foundations of Computer Science, 22(1),
pp. 15–27, 2011.

[9] Păun Gh., Pérez-Jiménez M. J., Rozenberg G., Spike trains in spiking neural P
systems, Int. J. of Foundations of Computer Science, 17(4), pp. 975–1002, 2006.

[10] Chen H., Ionescu M., Ishdorj T. O., Păun A., Păun Gh., Pérez-Jiménez M. J.,
Spiking neural P systems with extended rules: universality and languages, Nat. Comput.,
7, pp. 147–166, 2008.

[11] Chen H., Freund R., Ionescu M., Păun Gh., Pérez-Jiménez M. J., On string
languages generated by spiking neural P systems, Fundamenta Informaticae, 75(14),
pp. 141–162, 2007.

[12] Minsky M., Computation – Finite and infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, 1967.

[13] Krithivasan K., Păun Gh., Ramanujan A., Control words associated with P systems,
Frontiers of Membrane Computing: Open Problems and Research Topics, by Gheorghe
M., Păun Gh., Pérez-Jiménez M. J. (Eds.), published in the second volume of the
Proceedings of 10th Brainstorming Week on Membrane Computing, Sevilla, 171–250,
2012.

[14] Ramanujan A., Krithivasan K., Control Languages of spiking neural P systems,
Submitted.

[15] Păun Gh., Pérez-Jiménez M. J., Languages and P systems: recent developments,
Manuscript.

[16] Krithivasan K., Ramanujan A., Matrix Representation of Spiking Neural P Systems
with Delay, Proceedings of the Twelfth international conference on membrane computing,
France, pp. 283–298, 2011.

[17] The P System Web Page: http://ppage.psystems.eu

