
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 4, 2012, 319–334

Maintaining a Minimum Spanning Tree
for Kinetic Autonomous Robots

in 2D-Euclidean Plane

Chintan MANDAL, Anil Kumar SAHU, Suneeta AGARWAL

Department of Computer Science and Engineering,
Motilal Nehru National Institute of Technology, Allahabad, India

E-mail: chintanmandal@gmail.com, anilkumar0505@gmail.com,

suneeta@mnnit.ac.in

Abstract. This paper presents a procedure for maintaining a 2D-Euclidean

Minimum Spanning Tree for a set of n autonomous kinetic robots having no cen-

tral supervision. The proposed procedure is based on the Kinetic data structure

framework and the well known fact that the edges of the minimum spanning

tree for a given set of points in the 2D-Euclidean domain are contained in the

edges of its Delaunay triangulation. The kinetic data structure framework has

a centralized data structure along with a priority queue on which a proposed

algorithm works to maintain a combinatorial geometrical structure for a set of

geometric objects. In this work, we propose an approach where the computation

of the geometrical structure is done through the geometrical objects, in our case,

the computations being done by the robots themselves. This is unlike that of

maintaining a centralized data structure in the kinetic data structure framework.

The kinetic autonomous robots, each being a computing object do all computa-

tions by themselves and update the spanning tree as the tree changes. In terms

of kinetic data structure metrics, our data structure is local and compact.

Key words: Delaunay triangulation, Kinetic data structures, Euclidean

minimum spanning trees.

1. Introduction

A team of autonomous, homogeneous and synchronized robots are moving inde-
pendently in the 2D-Euclidean plane. They all have the same communication range,
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battery life, processing capability and memory. They act both as “sensors” and
“routers” for communicating among themselves. Such robots can be used to perform
tasks such as space exploration, cleaning floors, and search and rescue operations in
unknown and hazardous areas. An important criterion for performing a successful
job is communication among each other. Communication can be done by broadcast-
ing or routing messages through other robots. An Euclidean minimum spanning tree
(EMST) can serve the purpose for communication among the robots for routing. For
a connected and undirected graph G(V,E) with positive edge weights, a minimum
spanning tree (MST) is an acyclic sub graph of G which connects all the vertices
/ static robots in G such that the total edge weight of the tree is minimum. The
EMST is a special case of MST where the Euclidean distance between the vertices
are taken as edge weight and the vertices are coordinates in the Euclidean domain.
However, as the robots are in constant motion, the EMST changes. In this work, we
give a methodology to maintain and update the EMST at discrete times for a given
set of kinetic autonomous robots. In this paper, we use the terms robots and points
interchangeably.

Very few literatures are available for kinetic EMST in the 2D-Euclidean domain.
Fu and Lee [6] proposed an algorithm which requires O(kn4 log n) preprocessing
time for n moving points and k is the maximum degree of the motion function of
the points. The algorithm requires O(m) space, where m is the maximum number of
combinatorial changes of the EMST from time t = 0 to t = ∞. After preprocessing,
the EMST can be calculated at any given time t in O(n) time. Agarwal et. al. [1]
also proposed an algorithm for calculating Kinetic EMST, in which the edge weights
changes with linear function of time. Their algorithm runs in O(n2/3log4/3n) per
combinatorial change and also supports insertion and deletion of edges. Basch et
al.[4], Rahmati and Zarei [12] individually proposed data structures to maintain a
kinetic EMST based on the kinetic data structures (KDS) [2].

All the above algorithms can be envisioned as the KDS having a centrally con-
trolling unit, which maintains a single data structure for maintaining the EMST and
a priority queue. Changes in the combinatorial structure are reflected in the single
data structure. This is unsuitable for autonomous robots maintaining an EMST. For
any change in a data structure in a single robot, it has to be communicated to all the
robots to avoid inconsistency. Thus, one can think of decentralizing the maintenance
of the EMST through each robot. To the best of our knowledge, no algorithm exists
for maintaining an EMST among autonomous robots, all computations done by the
autonomous robots themselves. We propose a methodology based on the KDS frame-
work which was proposed by Basch and Guibas [3, 2] to maintain the EMST for the
moving autonomous robots, where the changes in the EMST are computed by the
robots themselves.

The rest of the paper is organized as follows: section 2 gives definitions and
properties of Delaunay triangulation along with a short on KDS; section 3 discusses
the proposed approach and methodology for maintaining the EMST among the robots;
section 4 gives an analytical study of the proposed algorithm with an experimental
result of the EMST obtained due to the kinetic robots and the exact EMST obtained.
We conclude by with stating some challenges in the problem in section 5.
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2. Related Theory

Our algorithm is based on the well known fact that the EMST is contained in
the edges of the Delaunay triangulation (DT) for a set of static points in the 2D-
Euclidean plane [9]. In this section, we give the definition of a DT along with its
important properties. Later in the section, a short introduction to the KDS is also
given.

Definition 1 (Delaunay triangulation [9]). A collection of triangles, 4, on
a set of points Pt = {p1, . . . , pn} is Delaunay(DT(Pt)) if and only if no point of Pt is
interior to any circum-circle of a triangle in 4.

Let 4(G) = (Pt,E) be a planar straight line graph representing a triangulation of
the set of points Pt = {p1, . . . , pn} and E be the set of edges. Me∈ 4(G) is a triangle
defined by the two end points of the edge, e ∈ E and the third point opposite it. In Fig.
1a, triangulation triangulation(ABCDE) is not a DT as points B and C are contained
in circum-circle(M ADE) violating the circum-circle criteria for DT. However, Fig.
1b shows a triangulation of the same set of points, triangulation(ABCDE), which is
a DT, where circum-circle of the triangles of the triangulation does not contain any
other points of the triangulation other than the three points on its circumference.
A non-DT (Fig. 1a) can be transformed to a DT (Fig. 1b) by deleting e ∈ E, the
diagonal of the quadrilateral formed by the end vertices of the edge, e and the vertices
inside the circum-circle(s) formed by Me and inserting a new edge joining the vertices
inside the circum-circle. In Fig. 1a, AD is deleted in the quadrilateral ABDE and a
new edge, BE is inserted (Fig. 1b). This procedure of deleting an edge and inserting
another edge in case of failure of the circum-circle criteria of DT will be referred as
a “flip”. It is to be noted that the outer boundary of the triangulation forms the
convex hull of the set of points Pt.
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Fig. 1. (a) Triangulation 4(ACBDE) is not a DT as circum-circle4ADE contains B
and C; (b) Triangulation 4(ACBDE) is a DT as portion of the circum-circle4ABE
or circum-circle4BDE each does not contain any other points of the triangulation.
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We give a short note on KDS [2], which we will use to maintain the combinatorial
structure of the DT and the EMST among the points in motion in the 2D-Euclidean
space. The KDS is an event based framework which uses temporal coherence among
the involved points defined as P = (Pxt

, Pyt
), each moving with a motion function.

It uses data structure(s) along with a priority queue for maintaining an attribute,
e.g. the convex hull [7], DT [8] for some geometric objects like points, lines in the
Euclidean domain. For maintaining an attribute, the geometric relations between the
objects should be valid. These collections of the relations for an object contribute to
their individual certificates. A failure of a certificate results in an event [2].

The certificates necessary for maintaining a DT are the convex hull of the kinetic
robots and the other for maintaining the property that no other robot lies inside a
circum-circle of the triangle formed by three robots in the triangulation. The latter
certificate is the relation between the three robots of a triangle in the triangulation
and the opposite robot of each edge of the triangle (Fig. 1a) defined as:
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In equation 1, M AtBtCt is the triangle formed by At, Bt, Ct at time t and Dt being
a point opposite to one of the edges of the triangle M AtBtCt. InCircleCertificate(M
AtBtCt, Dt) fails if the value of the determinant is greater than 0. In Fig. 1a,
the InCircleCertificate()-s are InCircleCertificate(M ADE,B), InCircleCertificate(M
BCD, A), InCircleCertificate(M ABD, C) and InCircleCertificate(M ABD, E).

The positive roots of the solution of the equation:

InCircleCertificate(M AtBtCt, Dt) = 0

give the failure time of the certificate and its corresponding event time for the failure
of the Delaunay criteria. The failure event generates a flip of the edge AD with
BE. New certificates are calculated with the new InCircleCertificate(M ABE, D)
and InCircleCertificate(M BDE, E) for the new edge BE. The positive roots of the
solution of the InCircleCertificate()-s gives the time at which the certificates will fail
for BE. All the events are pushed inside a priority queue known as the event queue.
At each failure time, new certificates are recalculated for the new geometric bodies
related with the event and the priority queue is updated.

3. The Proposed Approach

Our approach is based on the well known result that the edges for the EMST are
the subset of edges in the DT for static points. The DT for a given set of static points
can be obtained in O(n log n) time while the EMST can be obtained in O(n log n)
time by applying Kruskal’s [10] or Prim’s [11] algorithm over the DT. Based on this
well known result, we give a methodology for maintaining a kinetic EMST while
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maintaining the DT for a given set of moving robots. All EMST edges of the DT will
be referred to as branches and the other edges as chords. To maintain the DT we
use the KDS to track the changes in DT i.e., kinetic Delaunay triangulation (KDT)
proposed by Guibas et al. [8].

Let Pt = {p1, p2, . . . , pn} be the set of n robots moving in a 2D-Euclidean plane
having no obstructions and collisions among themselves. A collision free environment
is necessary for the KDT according to the assumptions of KDS. We assume the robots
to move in a rectangular boundary bounded by four static dummy robots placed at
infinity. In real life, the four static robots can be considered to be placed at large
distances, such that all the dynamic robots are contained in the rectangle defined
by the four static robots. Thus, the convex hull of the robots will always be this
rectangular boundary. The communication cost between the robots is assumed to be
constant irrespective of the distance between them and is less than the consecutive
difference of failure time of any event. Each robot pi ∈ Pt is represented by its motion
equation:

pi = (xi + vxt, yi + vyt), (2)

where (xi, yi) be the coordinates of the robots at time ti (the position when a certifi-
cate fails) and (vx, vy) gives the velocity along X and Y axis. We want to maintain
a EMST for the kinetic robots in set Pt while maintaining the DT. At t0 (when the
robots were static at the beginning), we form a DT with the given robot set Pt,
DT (Pt) ≡ G(Pt,E), where G(Pt,E) is the DT graph having Delaunay edges E.
The EMST is obtained using the Kruskal’s / Prim’s algorithm on G(Pt,E). With the
continuous change of time, the topology of the DT has to be maintained. The DT
gets modified when the circum-circle criteria of a triangle of the triangulation fails.
We state here the situations when the EMST or the topology of the DT changes.

The topology of the DT changes when there is a flip of an edge. If the flipped
edge is a chord, then it will be referred to as a Normal Flip Event. This results in
no change of the EMST but only a change in the topology of the DT. If the flipped
edge is a branch, then the current tree is broken into a forest of two trees. This will
be referred to as the Effective Flip Event. To reconnect the forest, due to minimal
communication ranges and avoiding broadcasting of the messages, a shorter edge is
chosen among the chords of the quadrilateral(ABCD), i.e. the quadrilateral in
which the edge has been flipped. Thus, an Effective Flip Event changes the topology
of the DT and the EMST as well.

It is possible that the topology of the DT does not change for a period of time
due to no flips. However, due to the motion of the robots, there will be a change in
the length of the branches and chords. To minimize the difference between the EMST
due to the kinetic robots and the exact EMST, we introduce a parameter, the Stretch
factor, λ (0 < λ < 1), which form the Stretch certificates. The failure of a Stretch
certificate indicates the event time when the length of an edge becomes (1 + λ) times
the length of the edge at ti:

length(Ei)tcurr ≤ (1 + λ)length(Ei)tj at tcurr; Ei ∈ E, (3)

where length(Ei)tj and length(Ei)tcurr
are the squared edge length of Ei at the

previous failure time, tj and the current time, tcurr respectively. It checks if the
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length of the branch is within a (1 + λ) factor of its length at tcurr. If it exceeds the
said length, the state of the erring branch is changed to a chord. This results in the
EMST to be broken. A new branch is chosen among the chord(s) of the quadrilateral
in which the erring edge was a branch. The change of the states of the edges will be
referred as a switch. The Stretch event does not change the topology of the DT.

In both Effective Flip Event and the Stretch Event, the present EMST gets
broken into a forest and new a chord is chosen to rejoin the forest. A chord is chosen
in the quadrilateral in which the branch has been flipped or the state of the branch
is changed. The chord is chosen such that a cycle is not formed in the DT to join the
forest of the two trees. The validity of the chord chosen to be a connecting branch
is done by checking for a formation of a cycle due to it being added in the tree by
communicating through the robots in a breadth first way along the robots in the
branches. This requires a O(log n) time for checking cycles.

3.1. Data Structure for communication

In this section we discuss how the robots keep information about the DT and edges
of the DT such that they can communicate. All robots keep information about their
adjacent robots, if an edge exists between them in the DT and the status of the edges.
The status of the edges of the DT can be a branch (1) or a chord (0). They also
store the failure time of each certificate, i.e. (i) failure time for the Delaunay edges
that are incident to it (calculated from the InCircleCertificate()) and (ii) failure time
for its stretchable limit (λ) for every branch that is incident to it (calculated from the
StretchCertificate() of the branches). All the failure times of the events are kept in
each robot in a sorted order according to the time which will occur first.

Table 1. Initial information at each robot A, B, C and D at t0

Robot List Event Queue Q

A

({B, {C,D}; 1), (C, {B,G}; 1),

(D, {B,H}; 0), (H, {D,G}; 1),

(G, {C,H}; 1)

{t1[E], B}, {t2[E], C},

{t3[F ], D}, {t4[S], B},

{t5[E], G}, {t6[E], H},

{t7[S], C}, {t8[E], H},

{t9[S], G}

B

(A, {C,D}; 1), (D, {A,E}; 1),

(C, {A,F}; 0), (E, {D,F}; 1)

(F, {C,E}; 0)

{t1[E], A}, {t10[E], D},

{t11[S], D}, {t12[F ], C},

{t13[S], A}, {t14[S], E},

{t15[E], E}, {t16[F ], F}

C
(A, {B,G}; 1), (B, {A,F}; 0)

(G, {A,∞}; 0), (F, {B,∞}; 0)

{t2[E], A}, {t12[F ], B}
{t7[S], A}, {t17[F ], F}

{t18[F ], G}

D
(A, {B,H}; 0), (B, {A,E}; 1)

(H, {A,∞}; 0), (E, {B,∞}; 0)

{t19[F ], H}, {t10[E], B},

{t3[F ], A}, {t11[S], B},

{t20[F ], E}

At the time of initialization, a DT is constructed and an EMST is obtained by
a central system using Kruskal’s [10] / Prim’s [11] algorithm with the given robots.
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The central system distributes the failure time calculated from the certificates of the
respective edges to its end robots. Figure 2 shows an initial DT for eight robots. After
the robots have been updated, they are left on their own with their own motion. As
the robots go into motion, communication is done between themselves.

A

B

C

D

E

F

G

H

BranchDirection of the Robot

Fig. 2. Initial Delaunay triangulation at t0

We give below the details of the data structure in each robot to maintain commu-
nication between each other:

1. A List of nodes indexed on the basis of label of the adjacent robots and each
node contains

(a) Label of the adjacent robots if they are connected to it by edges of the DT.

(b) A set of labels of the two end robots (represented within {}) which may
form an edge as a result of flipping joining the robot and an adjacent robot.

(c) Edge type - 1 (branch) or 0 (chord) in the DT joining the robot and the
adjacent robot.

2. An Event Queue: each entry in queue contains

(a) Failure time (ti) of each certificate, related to the edge incident on this
robot, sorted from the earliest to the farthest.

(b) Type of the event (Effective Flip [E] / Normal Flip [F] / Stretch [S]) asso-
ciated with each ti.

(c) All certificates are related with the edges of the DT. An edge is composed
of two robots on either side. The index to the other robot is the other
information kept in the robot for each failure time of a certificate.

The List in each robot contains the details of edges incident on each robot along
the Delaunay edges. The Event Queue (Q) is a prioritized according to the earliest
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time in which an edge incident to it will fail. This helps is identifying the earliest
event which will occur for a robot to handle.

Figure 2 shows the DT for a set of robots- {A, B, C, D, E, F, G, H} at t0, each
having a direction of its own. All future failure times from certificates are calculated
by both the end robots of an edge represented in the List. Table 1 gives the List and
Event queue (Q) stored in the robots A, B, C and D at t0. A List entry of A as
({B, {C,D}; 1) indicates that A is connected to B with a branch (1) and the other
two robots on either side of the branch are C and D. An Event queue entry represented
as {t1[E], B} means that at t1, the certificate to be changed is related with the edge
connecting B and the edge flip will be Normal Flip. The InCircleCertificate() for
edge AB will be calculated by both robots A and B.

3.2. Handling Events

An event occurs when a certificate fails, i.e. the time at which an event occurs.
Events are classified as (a) internal when the combinatorial structure of the main
attribute do not change but its certificates need to be changed (e.g. the EMST
obtained from a DT do not change but the DT itself changes) and (b) external when
the combinatorial structure and its certificates also change. An event can be a flip of
an edge (a branch or a chord) in the DT or even a switch of a branch when its stretch
limit occurs. Each event is processed by deleting the event from the queue and the
list that is maintained by the adjacent robots.

There are three events — Normal Flip Event(F), Effective Flip Event(E), and
Stretch Event(S). The Effective Flip Event is an extension of the Normal Flip Event,
where a potential branch is searched for joining the forest before the flip event takes
place. After processing each event, new failure times from certificates for the new
objects are calculated.

3.2.1.Normal Flip Event

A Normal Flip Event takes place when the InCircleCertificate() fails for a triangle
and a chord is flipped. This results in a change of topology of the DT but not the
EMST. This is an internal event, as there is no combinatorial change in the EMST,
but only changes in the certificates of the DT.

The following operations are performed to handle this event

1. The node, which is pointed by the failed event, is deleted from the list of both
the adjacent robots.

2. Two new triangles are created as a result of a flip. The entries in the set are
updated by changing the label in the node of the end robots of the edge that is
to be flipped.

3. One node is added to the list of end robots of the flipped edge.

At t1, in triangulation(ABCDEFG) (Fig. 3a), the certificate of edge AB fails as an
adjacent robot (D) is contained in the circum-circle of the triangle 4ABC. Seeking
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in robot B, the only entry related with A in its List is (A, {C,D}; 1). Thus when
the Normal Flip event (Fig. 3b) happens at t1, the following happens:

(a) The nodes whose index is stored in the event having fail time t1, is deleted from
the list of both the end robots.

(b) The entries {B,G}, {B,H} and {A,E}, {A,F} for future edge in the nodes,
which are indexed by the C and D in the list of A and B are changed to {D,G},
{C,H} and {C,E}, {D,F} in A and B respectively.

(c) One node is added to the list C and D which represent the edge CD and contains
the labels of the future edge i.e. AB.
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H

Branch

Direction of Robot

Edge created after flipping

Branch to be deleted

(a)

A

B

C

D
E

F

G

H

Branch

(b)
Fig. 3. Normal Flip Event : (a) Failure of Delaunay criteria;

(b) Edge AB flipped with CD.
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Table 2 shows the changes in the List and Event queue after t1 of the different
robots, when there has been a Normal Flip of AB to CD.

Table 2. Information at each robot A, B, C and D at t1
after update of the List and EventQueue

Robot List Event Queue Q

A

({C, {D,G}; 1), (D, {C,H}; 0),

(H, {D,G}; 1), (G, {C,H}; 1),

(G, {C,H}; 1)

{t21[E], C}, {t22[F ], D},

{t5[F ], G}, {t6[E], H},

{t7[S], C}, {t8[E], H},

{t9[S], G}

B
(D, {C,E}; 1), (C, {D,F}; 0),

(E, {D,F}; 1), (F, {C,E}; 0)

{t23[E], D}, {t11[S], D},

{t24[F ], C}, {t14[S], E},

{t15[E], E}, {t16[F ], F}

C
(A, {B,G}; 1), (B, {A,F}; 0)

(G, {A,∞}; 0), (F, {B,∞}; 0)

{t2[E], A}, {t12[F ], B}
{t7[S], A}, {t17[F ], F}

{t18[F ], G}

D
(A, {B,H}; 0), (B, {A,E}; 1)

(H, {A,∞}; 0), (E, {B,∞}; 0)

{t19[F ], H}, {t10[E], B},

{t3[F ], A}, {t11[S], B},

{t19[F ], E}

3.2.2. Effective Flip Event

An Effective Flip Event occurs when a branch is flipped. This event requires an
update in the EMST. The Effective Flip Event is an extension of the Normal Flip
event. Before flipping a branch, a potential branch is searched among the chords of the
quadrilateral in which the flip is to take place, such that the forest of the disconnected
trees can be joined and the EMST is updated. To find the potential chord, both robots
checks the distance to the other two robots present in the same quadrilateral. Then,
the robot that is at minimum distance and will not create a cycle is marked as the
new branch and its entry is updated to 1. A cycle is detected by following a breadth
first search through the present EMST using the potential branch. The checking for
the cycle requires O(log n) time for n robots. This is an external event, as there is a
combinatorial change in the EMST, but only changes in the certificates.

We elaborate Effective Flip Event with the following example:

(a) In Fig. 4a, when the branch AB is flipped with CD, the EMST is broken into a
forest. Robots A and B check distances from C and D and a least cost edge is
chosen which does not make a cycle.

(b) AC and BD are already branches. Thus, a choice exists between chords {BC,AD}
and if distance(BC) < distance(AD), B updates its node representing edge
BC as branch (Fig. 4b) i.e. changes the node value in the List from 0 to 1.

(c) A new Stretch Certificate for edge BC is calculated. A cycle is detected by
following a breadth first search through the present EMST present.
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(b)
Fig 4. Effective Flip Event : (a) Failure of Delaunay criteria;

(b) Flipping of AB with CD and updation of EMST with BC.

3.2.3. Stretch Event

We refer failure of the Stretch Certificate(StretchCertificate()) as a Stretch Event.
This event changes the EMST. This event is handled if the stretch factor of the branch
exceeds the length at the time of the last failure by 1 + λ. In this case, the status
of the branch is changed to a chord. This change reflects on the EMST to break it
into a forest of two trees. To find the potential chord to join the tree, the incident
edges on the robots of the edge are checked to join the forest. This is again checked
similarly as done in Effective flip event. This is also an external event.

We elaborate the Stretch Event with the following example:

(a) In Fig. 5a, suppose at some time ti, stretch certificate of edge BC fails. The
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status of the edge is changed from 1 to 0. This makes the tree disconnected to a
forest of two trees.

(b) Robots B and C check the distances to all the other robots joined by chords to
each of them (C and F for robot B; D, F, B and G for robot C). The length of
the chords are communicated to one of the robots (in this case the lower indexed
robot, B), which checks for existence of cycles with the chords. The status of the
shortest chord not forming a cycle and joining the forest is changed from 0 to 1
(Figure 5b).

(c) The cycle is detected by doing breadth first search along the branches of the trees,
which requires O(log n) time.

(d) The Stretch Certificate is again calculated for the new branch according to the
length of the at tcurr [Equation 3]. In our example, as no other edges are shorter
than BC, the status of BC is again changed from 0 to 1.
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Branch

(a)

A

B

C

D

E

FG

H

Branch
Direction of Robot

(b)

Fig. 5. Stretch Event : (a) Failure of stretch factor of EF;

(b) switch of EF with BF.
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4. Analysis of the Methodology

The initial EMST from DT can be constructed in O(n log n). Thus the pre-
processing time requires O(n log n) time. All robots can calculate the certificates
(InCircleCertificate() and StretchCertificate()) related to it O(1) time.

In accordance to KDS metrics, we give the analysis as:

1. The total number of edges in DT is in O(n). So, the total number of certificates
is also in O(n) and each point participates in average, i.e. O(1) number of
certificates so, it is local and compact.

2. To process Normal Flip Event and an Effective Flip Event it takes O(1), but
it takes a O(n) time required to update the Event Queue and List in all the
robots. However, an average number of six robots are required to be updated
by each robot along an edge for any event [5].

3. A cycle is validated by adding a chord as a branch and searching for the cycle
along the robots of the existing branches in the DT using a breadth first search
taking O(log n) time.

4. It is not possible to give an upper bound about the number of Stretch Events
that turns out to be external i.e. requires update in EMST.

Our EMST is not exact, as the chord chosen for reconnecting the forest is among
the chords of the quadrilateral of which a branch has been flipped or from chords
of adjacent triangles of the edge which has failed the Stretch Certificate. The chord
chosen will not be the global minimum chord joining the forests.

We have done simulations for numerous points moving with linear velocity for
various stretch factors. A comparative study has been done between the EMST
obtained due to the changes in the DT for the kinetic robots and the EMST obtained
due to the same robots in the static position from the DT. The exact EMST is
calculated using the Kruskal’s or Prim’s algorithm in the present DT. We give here
the comparative graphs for the exact EMST and EMST obtained by updating due
to the kinetic robots for λ = 0.1 (Fig. 6a), 0.5 (Fig. 6b) and 0.9 (Fig. 6c) for time
t = 0 to t = 115 secs (Fig. 6).

5. Conclusion

We have proposed a methodology based on the KDS to maintain an EMST for
autonomous robots in motion in the 2D-Euclidean plane. These could be used in
hazardous areas, where a centralized system will be unable to be maintained. Unlike
KDS, which uses a central data structure for maintaining the geometrical attributes
and a queue for the certificate failure time, we do not maintain it as such. The
certificate failure times are distributed among the robots, enabling the EMST to be
maintained by the robots themselves. This distribution of the certificate failure times
and the updation of the KDS List and Event Queue among the robots make the
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KDS to be not responsive. A KDS is responsive if it is a O(polylog) algorithm, i.e.
it is a polynomial function of logarithm in n. A longer communication time between
robots than the time difference between the consecutive failure times of the certificates
ensures that the updation of the robots do not be inconsistent.
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Fig. 6. Comparison of kinetic EMST and exact EMST

for stretch factors (λ): (a) λ = 0.1; (b) λ = 0.5; (c) λ = 0.9.

References

[1] Agarwal P.K., Eppstein D., Guibas L.J., Henzinger M.R., Parametric and kinetic
minimum spanning trees, pp. 596–605, Nov 1998.

[2] Basch J., Kinetic data structures, 1999.

[3] Basch J., Guibas L.J., Hershberger J., Data structures for mobile data, pp. 747–
756, 1997.

[4] Basch J., Guibas L.J., Zhang L., Proximity problems on moving points, pp. 344–351,
1997.

[5] de Berg M., van Kreveld M., Overmars M., Schwarzkopf O., Computational
Geometry: Algorithms and Applications, Springer-Verlag, second edition, 2000.

[6] Fu J.-J., Lee R.C.T., Minimum spanning trees of moving points in the plane, IEEE
Transactions on Computers, 40(1), pp. 113–118, Jan. 1991.

[7] Guibas L.J., Kinetic data structures: a state of the art report, Proceedings of the
third workshop on the algorithmic foundations of robotics on Robotics: the algorithmic
perspective, WAFR ’98, pp. 191–209, Natick, MA, USA, 1998. A. K. Peters, Ltd.

[8] Guibas L.J., Mitchell J.S.B., Roos T., Voronoi diagrams of moving points in the
plane, in Gunther Schmidt and Rudolf Berghammer, editors, Graph-Theoretic Concepts
in Computer Science, volume 570 of Lecture Notes in Computer Science, pp. 113–125.
Springer Berlin Heidelberg, 1992.



334 C. Mandal et al.

[9] Hjelle Ø., Dæhlen M., Triangulations and Applications (Mathematics and Visual-
ization), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[10] Kruskal J.B., On the shortest spanning subtree of a graph and the traveling salesman
problem, Proceedings of the AMS, Vol. 7, pp. 48–50, 1956.

[11] Prim R.C., Shortest connection networks and some generalizations, Bell Systems Tech-
nical Journal, pp. 1389–1401, Nov. 1957.

[12] Rahmati Z., Zarei A., Kinetic euclidean minimum spanning tree in the plane, Pro-
ceedings of the 22nd international conference on Combinatorial Algorithms, IWOCA’11,
pp. 261–274, Berlin, Heidelberg, 2011, Springer-Verlag.


