
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 15, Number 4, 2012, 344–354

Block Method for Convex Polygon
Triangulation

Predrag S. STANIMIROVIĆ, Predrag V. KRTOLICA,
Muzafer H. SARAČEVIĆ, Sead H. MAŠOVIĆ

Faculty of Science and Mathematics, University of Nǐs
Vǐsegradska 33, 18000 Nǐs, Serbia

E-mail: {pecko,krca}@pmf.ni.ac.rs,
{muzafers,sekinp}@gmail.com

Abstract. In this paper, the block method for convex polygon triangula-

tion is presented. The method is based on the usage of the previously generated

triangulations for polygon with smaller number of vertices. In the beginning,

we establish some relations between the triangulations of the polygons having

the consecutive number of vertices. Using these relations, we decompose the tri-

angulation problem into subproblems which are themselves smaller instances of

the starting problem. The recursion with memoization is used to avoid repeat-

ing the calculation of results for previously processed inputs. The corresponding

algorithm is developed and implemented.

Key words: Convex polygon triangulation, Catalan numbers, Recursion,

Memoization, Divide & Conquer algorithms.

1. Introduction and Preliminaries

Polygon triangulation is an important problem applicable in computer graphics. It
is a basic primitive and preprocessing step for most nontrivial operations on polygons.
Decompositions od two dimensional scenes are used, for e.g., in contour filling, hit
detection, clipping and windowing (see [1, 2, 5]).

Restricted on the convex case, triangulations are defined by non-intersecting in-
ternal diagonals of the polygon. Let Pn denote a polygon with n vertices. In this
paper, we suggest a method to triangulate Pn using already produced blocks in the
triangulation of a Pb, with b < n.

Block Method for Convex Polygon Triangulation 345

The total number Tn of n-gon triangulations is

Tn = Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
=

(2n− 4)!

(n− 1)!(n− 2)!
, n ≥ 3. (1)

Here, Cn represents the nth Catalan number (about the topic see e.g. [7]).
The set of all triangulations of the convex polygon Pn is denoted by Tn. A diagonal

connecting vertices i and j is denoted by δi,j . An outer face edge can be considered
as a diagonal, while non adjacent vertices are connected by an internal diagonal.

The general strategy used in our method is to decompose the problem into the
smaller dependant subproblems. Each subproblem is solved only once and used many
times avoiding unnecessary repetitions of calculation. The algorithm for deriving
the set Tn from Tn−1 is presented in [6]. We have been inspired by this algorithm
to define our block method for convex polygon triangulation. Our method is aimed
to accelerate the triangulation process of Pn using Tn−1 as blocks of stored internal
diagonals. More precisely, our algorithm generates the set Tn using all the previously
generated triangulations Tb, b < n. Here, the set Tb is used as many times as necessary
as a block, i.e. it is repeated several times in Tn.

Since Cn =
4n− 2

n+ 1
Cn−1, it is not difficult to verify that the inequality Tn > 2Tn−1

is satisfied for all n > 4. Therefore, the number of triangulations Tn = Cn−2 can be
recursively expressed as

Tn = 2Tn−1 + rest(Rn). (2)

The following statement gives a formal background for our method.

Proposition 1.1. Every triangulation from Tn−1 appears as a starting part of
exactly two triangulations form Tn.

Proof. If we consider an Pn−1 and its edge δ1,n−1, then it is obvious that in Tn−1

this edge belongs to the triangle (1, i, n−1), 2 ≤ i ≤ n−2. Let the point which is out
of Pn−1, and labeled by n, be in the position to form (with nodes 1, . . . , n−1) a convex
polygon. The diagonals δ1,i and δi,n−1 make vertices 2, . . . , i−1, i+1, . . . , n−2 closed
with respect to the vertex n. Also, the vertices 1, i, n− 1, and n form a quadrilateral.
This quadrilateral can be triangulated in two ways, so each triangulation from Tn−1

appears as a starting part in two triangulations from Tn.
Note that there are some other triangulations in Tn which should be derived in

other way. �

Memoization is a useful and important tool for solving heavy recursive computa-
tions (cf. [3]). The triangulation problem is, by its nature, the recursive and time
consuming job. The underlying idea is to speed up recursive algorithms by avoiding
recomputations caused by the overlapping subproblems.

Instead of having an entry in the table for the solution of each subproblem, in
this case we have stored previously generated triangulations Tn−1. As it is explained
above, in the significant number of cases, a triangulation from Tn−1 is an initial part
of two triangulations in Tn. Here it is not necessary to proceed with recursion further

346 P. S. Stanimirović et al.

(down to the triangle), but, in the memoization style, we just use what we already
have and, suitably complementing it, we get two new triangulations. Moreover, in
the case of traditional recursion, generating of Tn−1 will occur twice in independent
calculation subtrees. Now, this repetition is avoided.

This general idea is illustrated in Fig. 1, where the transformation process from
a P5 triangulation in two corresponding P6 triangulations is presented. In part (a)
we see that the diagonals δ2,4 and δ2,5 make all vertices closed except vertices 1, 2, 5,
and 6 which form a quadrilateral. The parts (b) and (c) show two ways to triangulate
a quadrilateral which give two P6 triangulations having the P5 triangulation as a
starting block.

Fig. 1. Transformation from a P5 triangulation

into the corresponding P6 triangulations.

A vertex i is closed by an internal diagonal with respect to the vertex j if vertex
i can not be an ending point of internal diagonal δi,j because it implies the diagonal
crossing (recall that a triangulation is made by non-intersecting internal diagonals).
We simply say that i is the closed vertex if i is closed with respect to all other vertices
in the polygon. The closed vertex has the degree 2 and it is alternatively called an
ear.

The algorithm presented in Section 2 is compared with algorithm developed by
Hurtado and Noy and presented in [6]. For this reason, we restate here this algorithm.

Algorithm 1 Hurtado algorithm

Require: Positive integer n and the set Tn−1 of Pn−1 triangulations. Each triangu-
lation is described as a structure containing 2n− 5 vertex pairs presenting Pn−1

diagonals (here diagonals means both internal diagonals and outer face edges).
1: Check the structure containing 2n − 5 vertex pairs looking for pairs (ik, n − 1),

ik ∈{1, 2, . . . , n−2}, 2 ≤ k ≤ n − 2, i.e. diagonals incident to vertex n − 1. The
positions of these indices ik within the structure describing a triangulation should
be stored in the array.

2: For every ik perform the transformation (il, n−1) → (il, n), il < ik, 0 ≤ l ≤ n−3.
3: Insert new pairs (ik, n) and (n− 1, n) into the structure.
4: Take next ik, if any, and go to Step (2).
5: Continue the above procedure with next (n− 1)-gon triangulation (i.e. structure

with 2n− 5 vertex pairs) if any. Otherwise halt.

In the Section 2 we present the algorithm for the block method, while the execution
times for both algorithms are given in Section 3. Some interesting parts of the code
are presented in Appendix.

Block Method for Convex Polygon Triangulation 347

2. Algorithm for block method

Similarly to the definition of the edge length in [9], we define a distance between
two polygon vertices.

Definition 2.1. The distance between two integers i and j, where i, j ∈ {1, . . . ,m},
is defined as

d(i, j) = d(j, i) = min{|i− j|,m− |i− j|}.

In the procedure used for finding and eliminating closed vertices, we should start
from an ear. As a triangulation has at least two ears, and, in the worst case one ear
can be a vertex n, then we always have at least one ear among the rest of the vertices.

For this purpose we make a list of ordered pairs of the form

L = {(1, 1), (2, 2), . . . , (n, n)}. (3)

After the elimination of n− l pairs the list L becomes

L = {(s, is), s = 1, . . . , l}, 4 ≤ l ≤ n, il = n. (4)

The values is, s = 1, . . . , l are the vertex marks, while values 1, . . . , l represent the
relative vertex positions in the list L.

Algorithm 2 Pair elimination

Require: List L of the form (4) and vertices ip and iq, where d(p, q) = 2.
1: Remove from the list L the pair placed between the pairs (p, ip) and (q, iq) in

circular manner.
2: Decrease by one the first pair members in the pairs following the eliminated one.

Further, we check the first n − 4 columns in the table for Tn looking for an ear.
The ear is recognized when, for diagonal δip,iq , we have d(p, q) = 2. Then we eliminate
the corresponding list element and decrease relative positions of the pairs following
the eliminated pair.

Algorithm 3 Form a qaudrilateral

Require: List L of the form (3), integer n and array of n − 4 diagonals (i.e. a row
in the table for Tn).

1: Find a diagonal δip,iq where d(p, q) = 2 in the list L.
2: Call Algorithm 2 for parameters ip and iq.
3: Repeat Steps 1–2 n− 4 times.

After n − 4 pair eliminations, we have four vertices in the list forming a quadri-
lateral which can be triangulated in two ways.

348 P. S. Stanimirović et al.

Algorithm 4 Algorithm for block method

Require: An integer n and Tb with rowb = Cn−3 rows and colb = n− 4 columns)

1: Create an empty table for Tn with rown = Cn−2 rows and coln = n−3 columns.

2: Fill the table for Tn by the triangulations from Tb duplicating each row from Tb.
3: Fill the rest of entered blocks (the last column in the first 2rowb rows) in the

following way.
for (i = 1; i <= 2rowb; i+ = 2)

{
Make a list L of the form (3).
Call Algorithm 3 with row i from table for Tn as a parameter.
From the remaining four vertices in list L make diagonal δi1,i3 and place it
in the last column of the row i and diagonal δi2,i4 and place it in the last
column of the row i+ 1.
}

4: Fill the rest of the table for Tn containing Tn − 2Tb rows.

4.1 Filling the first n− 4 columns in the last rown − 2rowb rows.
i = 2 ∗ rowb + 1;
Make the list L of the form (3).
Eliminate the vertices adjacent to n calling Algorithm 2 for parameters 1
and n− 1.
Fill the current table row i by diagonals δ2,n, δ3,n, . . . , δn−2,n.
The first n−4 columns in the rest rown−2rowb−1 rows should be filled by
diagonals with the last vertex n, while the first vertices are combinations
of the (n − 4)th class in the set {2, 3, . . . , n − 2}. The number of these
combinations is

(
n−3
n−4

)
= n− 3.

4.2 Filling the last column in the last (rown − 2rowb) rows.
for (i = 2rowb + 2; i <= rown; i++)

{
Make the list L of the form (3).
Call Algorithm 3 with row i from table for Tn as a parameter.
From the remaining four vertices in list L make diagonal δi1,i3 and
place it in the last column of the row i.
}

Example 2.1. As an example, we will present the procedure to derive T6 on
the base of T5. As we have already presented, Algorithm 4 consists of four steps. In
the first step, an empty table with the appropriate number of columns and rows is
created. In the second step, the table is filled with Tb in the duplicate. In the third
and fourth step, the remaining empty parts of the table are filled in (Fig. 2). In Step
(1) an empty table is created. Step (2) consists of copying the already derived blocks.
In Step (3) we fill the last column where blocks are copied. Step (4.1) fills the first
two columns in the rest of the rows and Step (4.2) completes the last column.

Block Method for Convex Polygon Triangulation 349

Fig. 2. Filling the table (step by step).

The process of T6 generation, based on a given T5, is presented in Fig. 3.

Fig. 3. Generated triangulation for n = 6.

Upon the creation of the empty table and its filling by T5 in the duplicate (Steps
(1) and (2)), in Step (3) we fill the last column of the first 10 rows. For each of 5
odd rows (T5 = 5 and even rows in first two rows contain a copy of the previous
odd indexed row) we should make a list L = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
Then, we try to find a diagonal whose ending points have the distance 2. Such a
diagonal in the first row is δ1,3. So, we eliminate a vertex between them, i.e. the
vertex 2, decreasing the first pair element by 1 in the pairs following the eliminated
one. In this way, our list becomes L = {(1, 1), (2, 3), (3, 4), (4, 5), (5, 6)}. Now, the
ending points of the diagonal δ1,4 also have the distance 2. The list transforms
to L = {(1, 1), (2, 4), (3, 5), (4, 6)}. We have eliminated n − 4 = 2 closed vertices,
and within the list there are four remaining vertices 1, 4, 5, and 6. They form a
quadrilateral which can be triangulated in two ways having δ1,5 or δ4,6 as a diagonal.
So, in the last column of the first row we store δ1,5 and in the last column of the
second row we store δ4,6.

We fill the first 10 rows in a similar way.

350 P. S. Stanimirović et al.

In Step (4) we fill the rest of the table. In this part any already present diagonal
(from the first 10 rows) can not be repeated. The first 10 rows have 5 rows with
diagonals not ending in the vertex 6 and 5 rows with exactly one diagonal ending in
the vertex 6. Therefore, in the rest of the table we must have rows with exactly three
diagonals ending in vertex 6 (there is exactly one such a row) or rows with exactly
two diagonals ending in 6.

After we have made a list L and eliminated vertices 1 and 5 (adjacent to 6), our
list is L = {(1, 2), (2, 3), (3, 4), (4, 6)}. There is one possibility with three diagonals
ending in 6, δ2,6, δ3,6, and δ4,6. Further, there are three combinations with exactly
two diagonals with ending point in 6, namely δ2,6, δ3,6; δ2,6, δ4,6; δ3,6, δ4,6. This
is done in step (4.1). The step (4.2) completes the work. Again we make the list
L = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} and checking the non-completed rows we
make vertex elimination as in Step (3). The diagonal δ2,6 forces the elimination of
vertex 1 transforming a list in L = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}. After this, the
diagonal δ3,6 also has the ending points on the distance 2 and implies the elimination
of the vertex 2. The list becomes L = {(1, 3), (2, 4), (3, 5), (4, 6)}. We need a diagonal
not ending in 6, so we choose δ3,5 and store it in the last column. This step, repeated
for the remaining rows, completes the algorithm.

3. Experimental Results

In [8] we investigate which programming language (Java, C++ and Python) is
most suitable to implement algorithms for a convex polygon triangulation. Based
on comparative analysis, Java programming language gave the best results in terms
of speed of generating triangulations. For implementation of Block method we used
NetBeans IDE environment for Java.

Table 1. The execution times for two algorithms (in seconds)

n
Number of

Hurtado
Block Speedup

triangulations Method

5 5 0.25 0.16 1.56
6 14 0.34 0.26 1.31
7 42 0.43 0.34 1.26
8 132 0.49 0.41 1.20
9 429 0.67 0.46 1.46
10 1,430 1.18 0.54 2.19
11 4,862 3.81 0.85 4.48
12 16,796 12.46 1.32 9.44
13 58,786 50.51 4.40 11.48
14 208,012 119.05 24.13 4.93
15 742,900 318.63 85.30 3.74
16 2,674,440 / 529.30

The execution times for both algorithms are presented in Table 1. The table col-
umn “Speedup” shows the quotient of values contained in the previous two columns.

Block Method for Convex Polygon Triangulation 351

The testing is performed in NetBeans testing module “Profile Main Project / CPU An-
alyze Performanse” in configuration*: CPU - Intel(R) Core(TM)2Duo CPU, T7700,
2.40 GHz, L2 Cache 4 MB (On-Die,ATC,Full-Speed), RAM Memory - 2 Gb, Graphic
card - NVIDIA GeForce 8600M GS.

The algorithm produces the triangulations of an n-gon using already known trian-
gulations of an (n−1)-gon. The number of triangulations growths rapidly with n and
these triangulations are stored in a file. For any larger n, all (n−1)-gon triangulations
can not be in the same time in memory. It is not important is it for n = 15, 16, or 20
(memories are getting larger in time) - the fact is: from some n we have to include
time needed for reading/writing data form disk. This fact implies significant increase
of the execution time. But it does happen in the same way with Hurtado’s algorithm
witch we try to accelerate. Experiment with larger values of n and inclusion of I/O
in execution time will make the performance difference of two algorithms blurry. For
n > 16, in Table 1, the RAM memory is exhausted. This problem can be overcome
applying the so-called virtual memory paging file (VMPF).

The better performances of the Block method with respect to the Hurtado algo-
rithm can also be confirmed by using the so-called performance profile, introduced in
[4]. The underlying metric is defined by the CPU time spanned for the construction
of all triangulations for the cases n = {5, . . . , 15}. Following the notations given in
the paper [4] we have that the number of solvers is ns = 2 (Block and Hurtado) and
the number of numerical experiments is np = 11. By tp,s we denote the number of
iterations required for solving the problem p by the solver s. The quantity

rp,s =
tp,s

min{tp,s : s ∈ {Hurtado,Block}}

is called the performance ratio. The performance of the solver s is defined by the
following cumulative distribution function

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}, s ∈ {Hurtado,Block}

where τ ∈ R and P represents the set of problems.

æ

æ

æ

æ æ æ æ

à à à à à à à

1 1.5 2 2.5 3 3.5 4 4.5
Τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ρ

à Block

æ Hurtado

Fig. 4. Performance profile regarding the CPU times arranged in Table 1.

352 P. S. Stanimirović et al.

Figure 4 shows data arranged in Table 1.
It is clear from Figure 4 that the Block method shows better performances com-

pared to Hurtado method. Namely, the probability of being the optimal solver is in
favor of the Block algorithm.

4. Conclusion

We have developed the algorithm for convex polygon triangulation which uses the
already made triangulations of a polygon with one vertex less. The similar approach
is used in [6], so we have compared these two algorithms. Our block method uses the
triangulations Tn−1 as whole blocks in Tn making the respectable part of the job done
quickly. The achieved significant speedup is a consequence of this approach.

Appendix: Application and Implementation Details

The applications Hurtado-Noy order and Block method are implemented in
programming language Java in NetBeans environment. The application input is an
integer n, i.e. the number of vertices for the polygon which is about to be triangulated.
Firstly, it is checked if there already exists the set Tn−1 stored in a file.

Both applications are implemented using the following classes: Triangulation,
App, Node, LeafNode, Point, and PostScriptWriter. The difference between them
is in the main class App containing executive method main(). In the application for
Hurtado algorithm, the class App calls its own method Hurtado() while the Block
method application calls the method Block().

The method Block() corresponds to Algorithm 4. This method can be divided
in four parts. The first one takes triangulations Tn−1 (Step 1). After this, Tn−1 are
copied (Step 2). In Step 3, the last column is filled with an additional diagonal.
This is the job of the method contains() which is a member of the class Node. The
method corresponds to Algorithm 3 and it is aimed to find the non-closed vertices
forming a quadrilateral. The method contains() calls the method elimination()

corresponding to Algorithm 2. The last part finds the rest of triangulations (Step
4.1). Within this part, the method contains() is called again to complete Step 4.2.

Java source code for Block method - (corresponds to Algorithm 4)

pub l i c Vector<Node> Block (i n t CatNum) throws IOException {

// step 1

Vector<Vector> bl = new Vector<Vector >() ;
t h i s . openFi l e (” baze / [T”+(CatNum+1)+” BAZA] . jdb ”) ;
b l . add (new Vector<LeafNode > ()) ;
b l . get (0) . add (new LeafNode ()) ;

// s tep 2

i n t l im=2; l im=CatNum;

Block Method for Convex Polygon Triangulation 353

f o r (i n t n=0; n <=CatNum; n++) {
Vector<Node> L = new Vector () ;
b l . add (L) ;

f o r (i n t row = 0 ; row < bl . get (n) . s i z e () ; row++) {
St r ing as=”row”+”#”+(row+1);

i f (n==lim) System . out . p r i n t l n (” row ”+(row+1)) ;
Node t = (Node) b l . get (n) . get (row) ;
Node s = new Node (new LeafNode () , t . copy ()) ;
L . add (s) ;

// s tep 3

i n t remainingBranch= n−2∗n1 ;
f o r (i n t k = 0 ; k < t . remainingBranch () ; k++) {

s = t . copy () ;
Node r = s ;
L . conta in s (r) ;
Vector<Node> R = new Vector () ;
r . equa l s (R) ;

// s tep 4

f o r (i n t i =0; i < k ; i++){

// step 4 .1
s = s . g e tLe f t () ; L . lastElement () ;
s . s e tLas t (new Node (new LeafNode () , s . g e tLe f t ())) ;

// s tep 4 .2
L . conta in s (r) ;
L . add (r) ; }

}
}

re turn b l . get (CatNum) ;
}

Java source code for method contains()-(corresponds to Algorithm 3)

pub l i c i n t conta in s () {
i n t a=th i s . conta in s ()− t h i s . l e f t . conta in s () ;
i n t b=th i s . r i g h t . conta in s ()−(t h i s . conta in s ()− t h i s . l e f t . conta in s ()) ;

f o r (i =0; i<=(n−4); i++){
i f ((a−b)==2) {
L . e l im ina t i on () ; }

}
re turn L . remainingBranch () ;

}

Java source code for method elimination()-(corresponds to Algorithm 2)

pub l i c i n t e l im ina t i on (){
i n t t=th i s . r i g h t . e l im ina t i on ()− t h i s . l e f t . e l im ina t i on () ;
r e turn t ; }

Java source code for method Hurtado()

354 P. S. Stanimirović et al.

pub l i c Vector<Node> Hurtado (i n t CatNum) {
Vector<Vector> H = new Vector<Vector >() ;
H. add (new Vector<LeafNode > ()) ;
H. get (0) . add (new LeafNode ()) ;

f o r (i n t n=0; n <= CatNum; n++) {
Vector<Node> l e v e l = new Vector () ;

f o r (i n t i= 0 ; i < H. get (n) . s i z e () ; i++) {
Node t = (Node)H. get (n) . get (i) ;
Node s = new Node (new LeafNode () , t . copy ()) ;
l e v e l . add (s) ;

f o r (i n t k = 0 ; k < t . l e f tBranch () ; k++) {
s = t . copy () ;
Node l = s ;

f o r (i n t i =0; i < k ; i++)
s = s . g e tLe f t () ;
s . s e tL e f t (new Node (new LeafNode () , s . g e tLe f t ())) ;
l e v e l . add (l) ; }

}
H. add (l e v e l) ;

}

re turn H. get (CatNum) ;
}

References

[1] Chazelle B., Triangulation a Simple Polygon in Linear Time, Discrete Computational
Geometry, Vol. 6, pp. 485-524, 1991.

[2] Chazelle B., Palios L., Decomposition Algorithms in Geometry, Algebraic Geometry
and its Application (ed. Ch. L. Bajaj), Springer-Verlag, Vol. 27, pp. 419–447, 1994.

[3] Cormen T. H., Leiserson C.E., Rivest R. L., Stein C., Introduction to Algorithms,
Second Edition, The MIT Press, 2001.

[4] Dolan E. D., Moré J.J., Benchmarking optimization software with performance pro-
files, Mathematical Programming. Vol. 91, pp. 201–213, 2002.

[5] Garey M. R., Johnson D. S., Preparata F.P., Tarjan R.E., Triangulating a simple
polygon, Information Processing Letters, Vol. 7, pp. 175–180, 1978.

[6] Hurtado F., Noy M., Graph of Triangulations of a Convex Polygon and Tree of
Triangulations, Computational Geometry, Vol. 13, pp. 179–188, 1999.

[7] Koshy T., Catalan Numbers with Applications, Oxford University Press, New York,
2009.

[8] Saračević M., Stanimirović P.S., Mašović S., Bǐsevac E., Implementation of the
convex polygon triangulation algorithm, Facta Universitatis, series: Mathematics and
Informatics, Vol. 27, pp. 213–228, 2012.

[9] Sen-Gupta S., Mukhopadhyaya K., Bhattacharya B. B., Sinha B. P., Geometric
Classification of Triangulations and Their Enumeration in a Convex Polygon, Comput-
ers and Mathematics with Applications, Vol.27, pp. 99–115, 1994.

