
 
 
 
 

ROMANIAN JOURNAL OF INFORMATION 

SCIENCE AND TECHNOLOGY 

Volume 23, Number T, 2020, T94-T105 
 
 
 
 

 

HARD: Bit-Split String Matching Using a 

Heuristic Algorithm to Reduce Memory 

Demand 
Xun LI1, 2, Lishui CHEN2 and Yazhe TANG1 

1 Xi’an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, P.R. China 
2 Science and Technology on Communication Networks Laboratory, Shijiazhuang , 05000, P.R. China 

Email: lixun2011@stu.xjtu.edu.cn, 78015159@qq.com, yztang@mail.xjtu.edu.cn 

 

Abstract. High-speed content inspection relies on a fast multi-pattern matching 

algorithm to detect predefined rules. When the number of target rules becomes large, the 

memory requirements of the matching engine become a critical issue. An effective 

technique to design high-performance matching engines is to divide the target rule set into 

multiple subgroups and to use a parallel matching hardware unit for each subgroup. The 

key to this effective technique is how to find a strategy to divide subgroups. This paper 

proposes an effective rule classifying method referred to as HARD for heterogeneous bit-

split string matching architectures. HARD uses the uniqueness of the target pattern to 

classify all target rule characters. This paper also presents a method to estimate the distance 

between strings in unique pattern category. The distance formula is next used to find a 

class for each rule. Furthermore, each class will be processed on different sizes of finite 

state machine. The experimental results show that the more the number of rules in the rule 

set, the more obvious the effect of HARD. In popular data sets, when the number of rules 

is above 4000, HARD can save nearly 50% of memory consumption compared to the 

previous bit-split string matching methods mentioned in the paper. 
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1. Introduction 

The emerging cloud computing and mobile internet are quite successful in business, with thousands of 

new applications generating huge network traffic. The traditional traffic identification reports only at the 

protocol or application granularity, e.g., the traffic belongs to Weibo or QQ, but it fails to provide fine-

grained traffic identification to tell which specific function (e.g., login, data input, output, etc.) the user is 

operating. Therefore, fine-grained traffic identification is essential for service providers and network 

operators to measure and monitor the network at a deeper level. This is an important part of ensuring network 

security and quality of service (QoS). 

Nowadays, one of the most powerful methods of ensuring network QoS is Deep Packet Inspection 

(DPI), which analyzes the payload to determine whether the target rules in the application layer match. In 

many cases, the target rule consists of multiple strings; therefore, the string matching engine is a key part in 

the DPI process. With the development of network services, the number of target rules has increased, and 

the length of the rule string (which means the number of characters in it) may vary greatly. After that, length 

change will lead to increase space usage. This poses a new challenge to the network matching engine. The 

most important question is: How to design a space-saving matching engine under fine-grained network 

recognition conditions? 

On this issue, previous researchers have done a lot of effective research work. A string matching 

method based on deterministic finite automaton (DFA) is proposed. In addition, in order to speed up the 



processing, the researchers proposed hardware structures such as FPGA [1]–[3] and TCAM [4] and made a 

lot of optimizations to reduce memory requirements. Despite it has many advantages, sparse memory usage 

is one of main problems in DFA-based string matching. Finite state machine (FSM) based algorithms such 

as Aho-Corasick (AC) are widely used in string matching hardware design. These memory-based algorithms 

can handle problems in a linear time complexity in time. However, memory requirements that are 

proportional to the number of states and the number of bits in each state can be an important limiting factor 

[6]. Khan et al. [6] and Jony [7] presented comparative analysis and experimental results on various string 

matching algorithms. In the AC algorithm described in [5], the number of state pointers in each state is 256 

for ASCII (8-bit) input, which results in DFA-based string matching engines requiring a lot of memory. 

The following scenarios have motivated us in this paper to try to solve the problem mentioned above. 

⚫ Bit-split string matching [8]. Use multiple FSM TILEs with multiple input bit groups to reduce the 

number of state pointers. Tan L et al. [8] presents a bit-split string matching engine. The output state 

contains a partial match vector (PMV); the full matching vector (FMV) is obtained by performing a 

bitwise AND operation between the PMVs from the FSM tiles. Each bit in the FMV indicates whether 

its own pattern matches. 

⚫ Pattern grouping [9]. Another effective way to improve the efficiency of FSM-based string matching 

is to divide the target string into multiple subgroups. This will lead to replacing large chunks with 

multiple TILE working in parallel. Each string subgroup is mapped to a TILE. In general, assigning 

strings to subgroups can significantly improve performance in matching and overall memory 

consumption. 

The existing pattern grouping algorithms are aimed at a homogeneous architecture composed of the 

same TILE. A new method called a Heuristic Algorithm to Reduce memory Demand (HARD), is proposed 

in this paper. We first use the uniqueness of the target pattern [9] to classify all target rule characters into 

two categories and target a heterogeneous architecture, where each TILE can have a different number of 

memory resources and configurations. This makes resource allocation more efficient, which significantly 

reduces overall memory usage.  

In general, two aspects of this manuscript contribution can be listed as follows. First, we use the new 

heterogeneous finite state machine architecture. Second, a grouping heuristic algorithm for heterogeneous 

bit-split string matching architecture is proposed. This can allocate resources more efficiently, further 

reducing memory usage. The remainder of the paper is organized as follows. Section 2 describes the related 

work in the string matching area. Section 3 introduces the overview of HARD and describes the details of 

the HARD. We give the experimental results in Section 4. Finally, Section 5 summarizes the paper and 

discusses the future work. 

2. Related work 

String matching schemes classified into three types: heuristic-based, filtering-based, and automaton-

based string matching schemes [10]. 

Heuristic-based: The main idea of a heuristic-based string matching scheme is to skip unmatched 

characters and accelerate the search. A famous heuristic-based string matching schemes is the Boyer-Moore 

algorithm [11]. Searching for the occurrence of a pattern by performing comparisons at different alignment 

positions of the pattern and the text to be searched. With the information obtained by the preprocessing 

mode, many sequences can be skipped. In the worst case, however, there are no skipped characters. 

Assuming the pattern length and number of characters in the text are m and n, the worst case time complexity 

is O(nm). In addition, the BM algorithm is not suitable for multiple patterns matching. Although multiple 

pattern-matched strings can be used in heuristic-based string matching [13], multiple processing elements 

or cores should be configured. The use of heuristic algorithms to solve problems in these papers [12]–[16] 

is also worth learning. Abed Alguni [15] introduces two improvements to improve Cuckoo search and 

provides a good idea in terms of heuristic algorithms. Over the past decades, optimization problems have 

grown ever more popular not only in the academic literature but also in practice. Mls [14] and Precup et al. 

[15] provide some new idea in terms of optimization algorithms. 

Filtering-based: Since parallel strings match multiple patterns, a filtering-based string matching 

scheme is preferred. Filter-based string matching schemes use hash [17] or bloom filter [18]. These two 

algorithms have high memory efficiency when processing bit vectors. Filter-based string matching schemes 

can quickly exclude input data that does not contain a pattern to match. The assumption of this scheme is 

that there are few matching patterns in the text to be matched. In the worst case, when the matching is 

frequent, there are not many characters that can be skipped, and the performance of the algorithm given to 

the filtering will not be exerted. In the worst case, filtering-based string matching schemes might suffer from 

algorithmic attacks. 

Automaton-based: In an automatic string matching scheme, multiple patterns are mapped using states 

and state transitions between states. In particular, DFA-based string matching schemes perform a fixed 



number of state transitions at a time. Therefore, linear worst-case performance can be guaranteed. In 

addition, target patterns can be matched across multiple payloads, as each state contains information from 

the input sequence. However, DFA-based string matching schemes require a large amount of memory to 

store state information and state transitions for each state. The paper [19] proposed a dictionary ordinal 

string search algorithm based on compressed DFAs. In the AC algorithm, the DFA should contain a failure 

pointer from each state to the longest suffix state or matching sub-pattern. By sharing a common prefix, the 

number of states in DFA can be reduced; therefore, the state information can be compressed. However, in 

the traditional AC algorithm, since the number of state transitions is large, the memory requirement for 

storing state transitions in each state is large. 

Automaton-based string matching scheme can be implemented using general memory. For example, 

the AC algorithm is implemented using a two-dimensional memory architecture. Since storage state 

transitions require a large amount of memory, some studies have been performed in order to reduce the 

number of storage state transitions. In [1], [20], [21], by using configurable logic and distributed memory in 

FPGA, only state transitions to non-initial states are stored. However, compared to memory-based string 

matching engines, FPGAs are not flexible and updatable. In [5], [22], TCAM is used to compress the state 

transition information in DFA-based string matching. However, due to the high price and power 

consumption of TCAM, the application of TCAM in DFA-based string matching is limited. 

In [8], a bit-split DFA-based string matching was proposed to reduce the memory requirement for 

storage state transitions. To reduce the total number of state transitions for each state, multiple DFAs can be 

constructed for each input bit group by splitting one or more ASCII character codes into several bit groups. 

In addition, in order to identify matching target patterns, each state should contain its own matching vector 

and a set of bits or PMVs, where the value of each bit indicates whether the relevant target pattern matches 

in the state. Therefore, the memory requirements for storing match vectors can be very large. 

In general, grouping strings can significantly improve the performance of matching and overall 

memory consumption. Pattern grouping based on lexicographical sorting [8] aims to reduce the total number 

of states required in FSMs by maximizing the shared common prefixes among the strings of each group. To 

do this, these methods sort strings based on prefixes and then assign rule strings to different groups in order. 

Kim et al. [9] introduced a pattern 9grouping algorithm that uses the average length of the strings as grouping 

standard. The goal of Kim’s algorithm is to balance the number of target strings mapped onto each SMU. 

For this purpose, it makes the average length of the strings in each subgroup as close as possible to the 

overall average length of the strings. 

In the previous works [8], [9], [23], [24] and [25], several architectures based on the bit-split string 

matching scheme were proposed. In [12], [26], the memory requirements for storing state transitions towards 

initial states are reduced. In [8], [26], a multi-byte string matching is performed by multiplying the number 

of memory blocks. Even though the previous works related to the pattern grouping and architectures 

mentioned above have developed new bit-split string matching schemes, a string matcher should have 

memory blocks for storing match vectors, which can be the disadvantage in the new architectures based on 

the bit-split string matching scheme. 

3. Proposed method HARD 

In order to solve the problem presented in Section 1, we designed an effective method, called HARD 

that to divide the target rule set into multiple subgroups and to use a parallel matching hardware unit for 

each subgroup. As shown in Fig. 1, the input to HARD is rules set. In the proposed scheme step1, all target 

patterns are categorized into two groups - a set with non-unique patterns and a set with unique pattern. After 

that, in the step2, there is two phases: 1) estimation phase, which uses a calculation to estimation the 

correlation between rules and 2) growing phase for mapping rules to subgroups. The following subsections 

describe the method in detail. 
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Fig. 1. Proposed method HARD overview 

 

 

3.1. Changed target architecture 



In order to reduce the memory requirement for storage state transition, a string matching method based 

on bit-split DFA was proposed in [8]. By splitting one or more ASCII character code into several bit groups, 

multiple DFAs can be constructed for each input bit group, thereby reducing the total number of state 

transitions for each state. The paper [8] also describes a high-throughput architecture string matching engine. 

Multiple homogeneous string matchers are executed in parallel, mapping a small number of target patterns 

to each string matcher. In order to identify matched target patterns in states, each state should contain its 

own matching vector and a set of bits or PMVs, where the value of each bit indicates whether the related 

target patterns are matched or not in the state. In this method, the memory requirements for storing match 

vectors might be very large. FMV memory usage is still one of main problems in this architecture. 

To overcome the problem of memory usage waste, this paper tries to optimize memory in two ways. 

Utilizing the uniqueness of pattern technique proposed in the paper [26], we divide the rule set into two 

categories, which can reduce the FMV space of some rule strings, thus saving memory space; In addition, 

we believe that the homogeneous FSM will have a waste of space, because the size of the FSM is determined 

by the rule with the largest number of FSM state nodes. So, we have proposed heterogeneous FSM. To 

reduce the memory usage by sharing as many state nodes as possible under the bit-split FSM. Although such 

architecture adds complexity to the hardware circuitry, we believe this approach is feasible on some 

memory-intensive machines. We present the new bit-split string matching architecture, Fig. 2 shows the 

schematic of the entire matching process. 
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Fig. 2. Proposed architecture with heterogeneous FSM 

 

Fig. 2 also shows the proposed architecture with heterogeneous FSM. The upper half part is a classifier, 

in which the strings of the rule set are divided into two groups according to the unique pattern concept for 

subsequent processing. The lower part is a complete device, comprised of a set of rule modules. Each rule 

module acts as a large state machine and is responsible for a group of rules. Each rule module is composed 

of a set of TILEs (n TILEs are shown in this figure). Each TILE is essentially a table with some number of 

entries and each row in the table is a state. Each state includes some number of next state pointers and a 

partial match vector of different length. Fig. 3 shows that a rule module can take some number of bytes as 

input at each cycle and output the logical AND operation result of the partial match vectors of each tile. This 

technique splits characters into multiple b-bit chunks, where b=1, 2, 4 or 8, and uses one FSM to process 

each chunk. When b=1, one FSM is utilized to process each single bit input character, and when b=8, the 



method is reduced to the original character-level AC algorithm. 

We use the heterogeneous FSM architecture. The different FSMs in each tile apply for the 

corresponding PVM space according to the number of different FSM states. The structure designed in this 

way is to save memory usage space. In terms of unique pattern, we do not need PVM space consumption. 

Because for a unique set of patterns, each state matches only one pattern. The bit-splitting string matcher 

only needs to store the pattern matching index, instead of storing PMVs, which can reduce memory 

requirements. So, we only need the same number of bits as the FSM state. 
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Fig. 3. In the matching process, each state machine matches a fixed position, and multiple state machines 

work in parallel at the same time. 

3.2. Core idea and optimization 

The memory consumption can be estimated from the architecture as shown in Fig. 1. The minimum 

memory requirements for the nth FSM of the 𝑚𝑡ℎ TILE is as follows: 

MFSMmn
=(2b⌈log

2
Snumn

⌉+WPMVm
)Snumn

                                                    (1) 

where b is the number of bits processed at a time in an FSM. 𝑆𝑛𝑢𝑚and 𝑊PMVrespectively represent the total 

number of states and PMV bit-width. The proposed approach uses formula (1) to calculate the minimum 

memory requirement for each FSM. The bit-width of the PMV that is equal to the number of strings mapped 

onto that TILE. So, the grouping scheme can significantly impact the 𝑠𝑡𝑎𝑡𝑒𝑁𝑢𝑚𝑛 factor. The proposed 

algorithm explores the search space to find the grouping scheme that minimizes total memory consumption. 

Total memory consumption can be list as 

TMem= ∑ ∑ MFSMmn

8/b
n=1

G
m=1                                                                      (2) 

where G is the number of groups. To save memory, we can optimize by reducing both the value of 𝑊PMV and 

𝑆𝑛𝑢𝑚. 

To reduce the value of 𝑊PMV, we classify the rule strings in the original rule set using the unique and 

non-unique patterns defined in [9]. Kim H. et al. [9] propose a memory-efficient DFA-based string matching 

scheme that reduces the memory requirements by not storing the matching vectors.  

To reduce the value of 𝑆𝑛𝑢𝑚，One question we encountered was: How to assign rules to different 

classes to reduce the number of nodes in the bit-split DFA? And finally achieve the minimum memory 

consumption. We define it as an Assign Rules to different Classes Problem (ARCP). Suppose that the field 

𝑖 has a new allocation sequence ψ(i), 𝑖 = 1…N, after the organization, and the memory consumption in field 

𝑖 is Dψ(i). So ARCP seeks ψ(i), 𝑖 = 1…N, to minimize the total cost 

min
ψ∈TN

∑ Diψ(i)
N
i=1                                                                              (3) 

where 𝑇𝑁 is the set of all the permutation. 

In fact, this problem in our paper can be reduced from Quadratic Assignment Problem (QAP) [26] in 

polynomial time, denoted as QAP ≤𝑝 ARCP. QAP considers allocating n facilities to n locations. There are 

three types of costs in the problem: the cost function of the distance between locations, the flow function 

between facilities, and the cost of placing the facility in one location. The goal of QAP is to minimize the 

total cost of allocating facilities to different locations. If we remain the first two costs in QAP and set the 

cost of a facility-location placement to be zero, the problem can be formulated as 



min
ϕ∈Sn

∑ ∑ fijdϕ(i)ϕ(j)
n
j=1

n
i=1                                                                        (4) 

where 𝜙(𝑖), 𝑖 = 1 … 𝑛 is the location used to placing facility 𝑖, 𝑓𝑖𝑗 and dϕ(i)ϕ(j) are the cost function related 

to flow between facilities and distance between locations. 

To reduce QAP to ARCP, we first rewrite the ARCP formulation in (3) as 

min
ψ∈TN

∑ ∑ DijIψ(i)ψ(j)
N
j=1

N
i=1                                                                       (5) 

Iψ(i)ψ(j)= {
1,  if j=ψ(i)

0,  otherwise 
 

If we map the original fields order (of ARCP) to facility (of QAP) and the organized assign order (of 

ARCP) to the location (of QAP), (4) can be transferred to (5) by mapping the variables and functions: 

n→N,f→D,d→I,Sn→TN,ϕ→ψ. Since QAP is known as an NP-hard problem [276, ARCP is also NP-hard 

with a polynomial reduction from QAP. 

The brute-force method to calculate the ARCP leads to unacceptable calculation time even if it is pre-

computed. As a result, we propose a new grouping heuristic algorithm for targets heterogeneous bit-split 

string matching architectures. The algorithm uses specific measurements to estimate the correlation between 

strings. Correlation values play a key role in how strings are mapped to groups. This can allocate resources 

more efficiently, further reducing memory usage. 

3.3. Pattern classification 

To reduce the value of 𝑊PMV mentioned in Section 3.2, we classify the rule strings in the original rule 

set using the unique and non-unique patterns defined in [26]. Kim H. et al. [9] propose a memory-efficient 

DFA-based string matching scheme that reduces the memory requirements by not storing the matching 

vectors. We extend this classification concept to the bit-split string. In the proposed scheme, all target 

patterns are categorized into two groups - a set with non-unique patterns and a set with unique pattern. For 

the set with non-unique patterns, the bit-split string matching technique with PMVs is applied. In contrast, 

for the set of unique patterns, only a single pattern is matched in each state. For the set of unique patterns, 

because the bit-split string matchers store only the pattern matching index, the memory requirement can be 

reduced. 

3.4. Heuristic algorithm for dividing subgroups 

If the length of each rule string is not the same, the number of states in the bit-split FSM is not the 

same. Allocating the same memory space to all FSMs will leave some memory units partially unused. 

Experimental evaluation of related work shows that these unused memory spaces (basically wasted) 

constitute an important part of the overall memory consumption. Existing algorithms also tried to alleviate 

this problem. Their goal is to reduce the total number of states required in FSMs by maximizing the common 

prefix shared between each group of strings. To do this, these methods sort the strings based on the prefix 

and then assign the strings to the appropriate groups. Such solutions can reduce the portion of the wasted 

space, but strings with the same prefix are not necessarily having exactly the same length, which will 

inevitably lead to wasted space. Other algorithms introduced a pattern grouping algorithm that uses the 

average length of the strings as crucial factor in grouping. The goal of our algorithm is to balance the number 

of target strings mapped onto each TILE. To do it, this method attempts to make the average length of the 

strings of each subgroup as close as possible to the overall average length of the strings. Although the above 

mentioned algorithm takes into account the length of the string, the most fundamental reason that really 

affects memory usage is the number of output states of the bit-split FSM. 

We introduce and target heterogeneous architectures, where each block can have a different number 

of memory resources and configurations. This makes resource allocation more efficient, which significantly 

reduces overall memory usage. Aiming at the heterogeneous bit segmentation string matching architecture, 

a new string grouping heuristic algorithm is proposed. The algorithm uses specific measurements to estimate 

the correlation between strings. Correlation values play a key role in deciding how to map strings to each 

group. The algorithm makes decisions using precise string-related information. 

Similar to the k-means algorithm, our proposed algorithm divides the target string set into specified 

subsets. The main idea of the algorithm is to let the target string in a category have the least 𝑆𝑛𝑢𝑚 when 

converting to the final bit-split FSM. The algorithm mainly two steps: selecting sub-set sample points; and 

dividing rule set according to sample points. 

In the first phase, a common character-level prefix between two target strings can reduce the total 

number of states in the FSM. Mapping strings with the longest common prefix to the same group can reduce 



memory consumption. In the bit-splitting method, the bit-level prefix is very important, because each FSM 

processes one or several bits of each character, and two different characters may have up to 7 common bits. 

Therefore, the common prefix of each parallel finite state machine should be measured; separately. First, 

we define a new "distance" to measure the relationship between two rule strings. The following formula is 

defined to as a measure for distance ), d𝑖𝑗, that estimates the benefit of mapping the 𝑖𝑡ℎ and 𝑗𝑡ℎ strings onto 

the same group: 

dij=
Snum(stringi ,  stringj)

Snum(stringi)+Snum(stringj)
                                                                        (6) 

where 𝑆num( ) is a function that calculates the total number of nodes required to represent the given strings 

inside one FSM. The higher number of common states in two strings in bit-level FSM, the smaller the 

numerator of the above formula, and the smaller the final "distance" value. That indicates a closer distance 

between the two characters. When the algorithm starts, the first string can be assigned to the first group. 

DistanceSet is a 2D array where DistanceSet(i,j) indicates the index of the 𝑗𝑡ℎ string assigned to the 𝑖𝑡ℎ 

group. Then the distance between first string and the rest of the strings is measured using 𝑑𝑖𝑗 . The results 

are stored in the first row of a 2D vector called Distance_Vector. Then, if more than two groups are 

requested, the algorithm considers the string that is the least correlated to those already assigned to the first 

group. The selected string is then assigned to the second group. In a similar way, the string with the smallest 

correlation distance from all previously assigned strings will be selected as the subsequent group. This 

process continues until the first members of all groups are identified. Estimation phase can be illustrated in 

line 1 to line 8 of Table 1 that highlights the pseudo code. The complete code is given in [27]. 

 

Table 1. Heuristic algorithm for dividing subgroups 

  Function RC(rule classification) 

RC(Target rule Set，Number of Groups) 

# Estimation phase 

1      N= number of rule string in Target rule Set 

2      G= Number of Groups 

3      RC(1,1) = 1 

  4      FOR  i  IN  RANGE (1, G-1) : 

5            FOR  j  IN  RANGE (1, N): 

6                  d𝑖𝑗 = d𝑅𝐶(𝑖,1)𝑗 

7            Find the rule R that has the minimum distance  

with all already assigned rules  // store in DistanceSet 

8       RC(i+1,1) = index of R 

# Growing phase 

# In each string growing iteration, one of the ungrouped strings is selected and assigned to 

a group. 

9  FOR  i  IN  RANGE (S+1, N): 

10          Find the rule RR that has largest difference in distance between the two 

                                                                                 most highly correlated groups 

11          Find the class n that has the minimum distance with RR 

12       RC(n, end+1) = RR 

13          Update distance values of class n using  𝐷𝑖𝑗 

                                   (DistanceSet(n,j),1<j<N) using Eq.(6) 

In the second phase, the algorithm maps the remaining strings onto the groups in an iterative manner. 

In each string growing iteration, one of the ungrouped strings is selected and assigned to a group. The 

selection order has a great impact on the results. The proposed algorithm defines and uses a criterion to 

determine the string placement order. The criterion is as follows: the highest priority is given to the string 

that has the largest difference in Distance value with the closest group and with the other groups. Therefore, 

the assigned string is part of that group. The elements related to the assigned string are removed from the 

Distance_Vector since that string is not ungrouped anymore. In the meantime, the distance values of all 

remaining elements with the enlarged group are updated. This process continues until all strings have been 

grouped. The following formula is used for updating the Element-Group Distance values: 

 Dij=
Snum(groupi，stringj)

Snum(groupi)+Snum(stringj)
                                                                       (7) 



where 𝑔𝑟𝑜𝑢𝑝𝑖  is the set of all strings already assigned to the 𝑖𝑡ℎ group and, thus, 𝑆num(𝑔𝑟𝑜𝑢𝑝𝑖) represents 

the total number of states required to represent all strings in 𝑔𝑟𝑜𝑢𝑝𝑖 . Growing phase can be illustrated in 

line9 to line13 of Table1 pseudo code. 

4. Experimental results 

The performance of HARD method was evaluated using a simulator implemented in Python. The 

platform used in the experiment is a PC system with 3.1GHz Intel Core i5-2400 2 CPU and 8GB memory. 

We choose the following three popular rule sets as target rules, as shown in Table 2. 

 

Table 2. The rule sets selected for the experiment. 

Name NUM SIZE(B) AL* SD# 

Snort v2.8.spyware 2299 26103 11.4 8.1 

Snort v2.8.web-client 1657 67527 40.8 22.8 

ClamAV 28786 1921305 63.2 40.8 

suricata 2974 91216 33.4 19.6 

*AL - True Average Length     #SD – Standard Deviation 

Snort [28] is an open source intrusion prevention system capable of real-time traffic analysis and packet 

logging. ClamAV [29] is an open source antivirus engine for detecting Trojans, viruses, malware & other 

malicious threats. Suricata [30] inspects the network traffic using a powerful and extensive rules and 

signature language, and has powerful scripting support for detection of complex threats. The rule base we 

have used has a various length. The variation of string length in the rules can be seen from the value of the 

standard deviation. 

4.1. Effect of parameter selection 

HARD has an important parameter, namely GroupNum. It affects the results in different ways, and it 

is crucial to select an appropriate value for it. We randomly selected 200, 1000, 2800 rule strings from the 

ClamAV library for different experiments. Each time GroupNum takes a value of 1, 2, 10, 30, 50, 100 or 

200. The experimental results are shown in the Fig. 4. The results show that when the number of group 

grows in a narrow lower range, the memory saving ratio (changed memory space / original memory usage) 

is significant; after that small range, the saving ratio is flattened out. The tread can be further explained in 

Fig. 5. When the value of GroupNum changes from 1 to 2, it can save about 35% of the memory. From 2 to 

10, the memory saving ratio is as high as 60%. As the value of GroupNum increases, the saving ratio slows 

down. When the number of groups is about 50, the effect of grouping on memory saving is already weak, 

which indicates that memory savings are approaching the limit when there are about 50 groups. After that, 

the saving effect is not obvious anymore. In the extreme case, the number of groups is set to the number of 

rules, then the respective memory is applied according to the number of bit-split FSM output states 

corresponding to each string. Although there is no memory waste in this case, the time overhead will increase 

dramatically since the complexity of the grouping algorithm is O(n2). As a trade-off, the optimal value for 

GroupNum is taken around 50. By the way, although the packet algorithm time overhead complexity is 

O(n2), it does not add too much burden to the system since the rule database is usually only updated every 

few days or weeks for such intrusion detection systems. 

4.2.  Comparison to existing methods 

We tested our algorithm on four different rules data sets, and at the same time we compared the 

performance of the algorithms to those in [8] and [9]. In order to reduce the impact of the number of rules 

in the same database on the algorithm test results, we randomly selected (200, 600, 1000, 1400, 2200, 2800 

and 4000) rules in the same database for testing. There are two important adjustable parameters in the 

comparison work: p, the bit-width of a PMV which defines the maximum number of strings that can be 

mapped onto one group, and s, the number of states in each FSM. The best parameter values are found 

through different values of these parameters. Figure 6 illustrates the results achieved by the best parameter 

values for the existing approaches. p = ⌈log2 𝑔𝐿⌉, 𝑔 means number of bits in a partial match vector. 𝐿 



means number of characters per string on average, it can be derived from Table 2. It is worth mentioning 

that in these experiments the parameter GroupNum is set to 50. 

 

 

 
Fig. 4. Memory consumption under different groups. When the number of groups is about 50, the effect of 

grouping on memory saving is already weak, which indicates that memory savings are approaching the 

limit when there are about 50 groups 

 
Fig. 5. Memory saving ratio during grouping 

 

Fig. 6 shows the performance comparison of the HARD and the algorithms in [9] and [11]. It can be 

clearly seen that HARD can effectively save memory. First of all, it is obvious, that the bit-split AC 

algorithm requires the most memory in all the tested cases. This is simply because the bit-split FSM uses a 

uniform memory size and a lot of memory space is wasted. In addition, from the comparison of results from 

step2 and step1+step2 in each sub-graph, it can be seen that the first step of the algorithm plays an important 

role in the overall performance of the algorithm. Step1+step2 further improves the performance for different 

data sets. Since the classification in step1 can effectively reduce the use of 𝑊PMV. It is worth noting that 

step1 in Fig. 6 (d) does not show any significant memory saving because almost all rule strings in its rule 

set belong to non-unique pattern. Secondly, the performance of our method is more stable as the number of 

rules increases. This is due to the fact that our algorithm can reduce the number of states on the FSM and 

the space for PMV. In contrast, the method used in [9] and [11] mainly tried to reduce the number of states 

on the FSM, and not on PMV space. From Fig. 6, it can also be seen that HARD performs much better on 

ClamAV than other algorithms. This is because the length of the rule strings in the ClamAV varies a lot. 

From the standard deviation of each database, we can see that the algorithm performs better on datasets with 

larger standard deviations. 



 
Fig. 6. Memory comparison of different algorithms on different rule sets. The more the number of rules in 

the rule set, the more obvious the effect of HARD. When the number of rules is above 4000, HARD can 

save nearly 50% of memory consumption compared to the previous bit-split string matching methods. 

Fig. 7 shows the actual memory consumption and the waste of space due to structural reasons for 

different tested cases. We can see that the actual memory size requirement for different algorithms is actually 

not much different (since it is determined by the rules size itself). However, in the wasted space portion, 

each algorithm is completely different since different algorithms use different data organization methods 

and data structures. HARD applies for space on demand, and there is almost no space waste. When 

processing rules with different lengths in other algorithms, they can only apply for space based on the longest 

character, causing a certain amount of space waste. Lexicographical [9] sorting aims to reduce the overall 

number of states required in FSMs by maximizing the shared common prefixes among the strings within 

each group. For this purpose, these approaches sort the strings based on their prefixes and then assign the 

strings to the groups in order. Although the method in [9] is optimized for organization on common 

subsequence, the size of FSM in each group is determined by the rule with the largest number of states. 

Since all state machines use the same size of storage space, it inevitably leads to larger memory waste. 

Although the method in [11] tries to place each rule as much as possible to groups with similar average 

lengths, it is impossible to have the same length of all rules, so there is still a certain amount of wasted space. 

HARD reduces the consumption from two aspects. First, the state in the final rule within a group is 

minimized in the bit-split FSM, which essentially reduces the actual consumption. Secondly, the bit-split 

FSM size in each TILE is allowed to be different. This will effectively reduce the wasted space. 

Experimental results show that increasing the number of groups can also save more memory, which is more 

significant in scenarios with a larger number of rule string sets. 

 



 
Fig. 7. Comparison of wasted space and actual consumption. HARD requests space on demand, and there 

is almost no space waste. Other algorithms have different lengths of rule characters, and can only apply for 

space according to the longest characters, resulting in a certain amount of space waste. 

5. Discussion 

We proposed a method HARD in order to save memory. The HARD first uses the uniqueness of the 

target pattern to classify all target rule characters into two categories. Then applies a method to estimate the 

distance between strings in unique pattern category. The distance is then used to find a preferred placement 

of each rule into different groups. Furthermore, each group will be processed on different sizes of FSM. The 

HARD was assessed through considering several test cases. The results demonstrate that the memory saving 

increases with the increase of the number of groups. The performance of HARD becomes more obvious as 

the set of strings becomes larger. The drawback of using a larger number of groups is that more hardware 

circuit are required. 
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