
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 26, Number 1, 2023, 48–63

New Opportunities Model for Monitoring,
Analyzing and Forecasting the Official Statistics on

Coronavirus Disease Pandemic

Sergey M. ABRAMOV1, Sergey TRAVIN2, Gheorghe DUCA3, and Radu-Emil
PRECUP4, 5, *

1Russian Academy of Sciences, Program Systems Institute, 152140 Pereslavl-Zalessky, Russian

Federation
2Russian Academy of Sciences, Semenov Federal Research Center for Chemical Physics, Kosygina

Street 4, Building 1, 119991 Moscow, Russian Federation
3Institute of Chemistry, Research Center of Physical and Inorganic Chemistry, Str. Academiei 3, 2028

Chisinau, Republic of Moldova
4Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. V.

Parvan 2, 300223 Timisoara, Romania
5Romanian Academy – Timisoara Branch, Center for Fundamental and Advanced Technical Research,

Bd. Mihai Viteazu 24, 300223 Timisoara, Romania

E-mails: abram@botik.ru, travinso@yandex.ru, ggduca@gmail.com,

radu.precup@aut.upt.ro∗

∗ Corresponding author

Abstract. At the beginning of 2020, it became obvious that the coronavirus disease 2019
(COVID-19) pandemic will have a fairly significant scale and duration. There was an unmet
need for the analysis and forecast of the development of events. The forecast was needed
to make the managerial decisions in terms of knowledge on the dynamics of the pandemic,
considering and analyzing the incoming official statistics about the pandemic, modeling and
predicting the behavior of this statistics. Due to the objective and subjective factors, the
available statistics is far from the unknown true data regarding the pandemic. Therefore,
strictly speaking, it was necessary to model and predict not the dynamics of the pandemic,
but the dynamics of the official (i.e. government) statistics on the pandemic. This paper
proposes a new model, referred to as the new opportunities model, to monitor, analyze and
forecast the government statistics on COVID-19 pandemic. A modeling approach is offered
in this regard. The modeling approach is important as it answers simple questions on what
awaits us in the near future, which is the current phase of the pandemic and when all this
will be over. The new opportunities model is applied to three different countries in terms of
area, economy and population, namely Russia, Romania and Moldova, plus the Campania
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region in Italy, and proves to be efficient over other similar models including the classical
Susceptible-Infected (SI) model.

Key-words: Coronavirus disease 2019 pandemic; new opportunities model; official
statistics; optimization; parabolic regression; prediction.

1. Introduction
There are two general approaches to dynamic systems modeling and system identification.

The first one is based on measuring the values affecting the system, next calculating the sys-
tem trajectory, comparing it with experimental data, computing the system structure and models
such that to fit the input-output data (or the experimental data). This approach is referred to as
data-driven modeling, and it is currently popular in the context of machine learning as it usu-
ally employs nonlinear models as neural networks, fuzzy models and their combinations. Some
recent models and results of this approach are briefly discussed as follows. Finite difference ap-
proaches are applied in [1] to financial pricing models. Bifurcation sequences are discussed in [2]
in relation with piecewise linear maps. Data streams are subjected to clustering and investigated
on the basis of a clustering approach in [3] and the scarcity of labeled samples in large-scale data
streams is ensured in [4] using weakly supervised scalable teacher forcing networks. Decision-
making models are deeply discussed in [5] in the context of human well-being and resilience.
Fuzzy logic is widely used in this approach because of their transparency and ability to capture
both the dynamics and the nonlinearities. Fuzzy rule interpolation-based models applied to stu-
dent result prediction in [6]. Fuzzy cognitive maps are applied to traffic management in [7] in
the framework of agent-based cloud computing systems. Evolving fuzzy models are involved in
cloud-based identification [8], modeling the dynamics of shape memory alloy wire actuators [9]
and adaptive cloud-based control [10]. The tensor product-based model transformation is gen-
erally presented in [11] focusing on model-based control, investigated in [12] in close relation
to fuzzy modeling and applied in [13] to tower crane systems modeling. Signatures suggested
in [14] are applied to the observation process modeling in [15] and the algebraic structure of
fuzzy signatures is analyzed in [16]. Neural networks are proposed in [17] for modeling based
on biomonitoring studies data, in [18] for relation patterns extraction from climate data and in
[19] for drug development and biomedical applications.

The second approach to dynamic systems modeling and system identification is based on
knowing the analytical solution to the system of differential equations, which is actually the
system model. The parameters of the model are next computed so that the analytical solution fits
as closely as possible the input-output data.

Both approaches to dynamic systems modeling need the correct definition of an optimiza-
tion problem, where the objective function is usually quadratic and depends on the modeling
errors, i.e. the differences between the model output (or the solution) and the experimental data.
The variables of the objective function in the framework of the optimization problem are the
parameters of the models. Several classical optimization algorithms are applied in this regard
as the ordinary least squares approach. However, metaheuristic algorithms are also popular re-
cently as, for example, cellular genetic algorithms [20], NSGA-III [21], [22], hybrid quantum
computing-tabu search algorithms [23], monarch butterfly optimization algorithms [24], slime
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mould algorithms [25], [26], particle swarm optimization algorithms [27], hybrid particle filter-
particle swarm optimization algorithms [28], string theory algorithms [29], and harmony search
optimization algorithms [30].

This paper uses the second approach described above and suggests a model, referred to as
the new opportunities model, and a modeling approach to forecast the official (i.e. government)
statistics on the coronavirus disease 2019 (COVID-19) pandemic. Different models of pandemics
and epidemics are used in the literature, and they are referred to as SI, SIR and SEIR, where S
indicates susceptible, E indicates exposed, I indicates infected, and R indicates recovered. If the
primary data is not complete enough, and sometimes it could be contradictory and unreliable,
there is no reason to use too complex models. That is the reason why this paper is focused on
the simplest model, which is the SI (i.e. susceptible plus infected) model, because no reliable
primary data is available.

The motivations for the new opportunities model proposed in this paper are:

• unsuccessful management decisions leading to the expansion of the field of spread of the
pandemic,

• successful management decisions leading to a narrowing of the field of spread of the pan-
demic,

• change of the method of registration of cases,

• intensive mass vaccination,

• a new strain is also a change in the spread of the pandemic, a change in the number of
those who fall ill.

The new opportunities model is important and advantageous with respect to the state-of-the-
art briefly discussed here because of the following reasons:

• it is simple and also transparent, which makes it applicable to model other systems in
different areas,

• it exhibits very good performance, i.e. high prediction accuracy,

• it outperforms other similar models.

This paper is structured as follows: the analysis of the SI model, the development of the new
opportunities model and the modeling approach are presented in the next section. The validation
of the model and the modeling approach is carried out in Section 3 in terms of the application to
three different countries as far as their areas, economies and populations are concerned, namely
Russia, Romania and Moldova, and the Campania region in Italy. The efficiency of the model is
proved in comparison with other similar models. The conclusions are drawn in Section 4.

2. The New Opportunities Model and the Modeling Approach
The development of the model is discussed making use of an example, namely flying a ball

over the surface of a planet. It is considered that a ball is thrown at an angle to the horizon as
shown in Fig. 1 in order to illustrate the modeling approach by means of a relatively simple
example.
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Fig. 1. Illustration of the trajectory of a ball thrown at an angle to the horizon.

The gravitational acceleration on the planet and the parameters of the throw might be un-
known. However, that does not matter because it is known that neglecting the air resistance
and more complex aerodynamic effects (only inertia and gravity), the ball will move along a
polynomial including a parabola.

It is supposed that some experimental data is available, namely some timestamps and coor-
dinates of the ball. Then the parabola is drawn as close as possible to these coordinates, and
the well-known polynomial regression algorithm can be used in this regard. This will next allow
the analysis of the movement process, i.e. angles, speeds and gravitational acceleration can be
calculated. Finally, predictions can be made, that means the start, top (vertex) and end points and
the ball coordinates at any time can be computed.

The system (or the process) subjected to modeling can also be monitored. When new data is
applied, it is checked that the new points do not deviate much from the parabola. The parabola
is also recalculated in order to describe more precisely the true trajectory of the ball.

If the new points deviate greatly from the parabola, this indicates that obviously something
happened. Therefore, it is needed to accumulate some new data and calculate a new parabola. In
other words, the ball lost the opportunity to fly along the parabola A, and the ball obtained the
opportunity in the point X to complete its flight along the parabola B.

The illustration given in Fig. 1 and the above physical interpretation introduce the following
elements used in the sequel:

• modeling using experimental data and parabolic regression,

• analysis, i.e. calculation of model parameters,

• forecast by calculating the start and end points, vertex, coordinates at any time,

• monitoring that new points do not deviate from the parabola, and the refinement of the
parabola,

• transition recognition from the previous opportunity to the current one.
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The subject of the approach proposed in this paper is to model, monitor, forecast using official
statistics and not the true pandemic process. The authors understand that this data is far from true
data about the pandemic, but no other data is available. Only official daily statistics are available,
namely the numbers of COVID-19 cases, recoveries and deaths. The available statistics are
far from unknown true data about the pandemic due to objective and subjective factors as, for
example, in Russia the difference is six to ten times.

The official sites are the sources of primary data for the model development. For example,
these sites are [31] for Russia, [32] for Romania, [33] for Moldova and [34] for the Campania
region in Italy. Every day, the number of cases, the number of recovered and the number of deaths
are extracted from the site. These values and the timestamp are noted by the letters V,H,D and
t, respectively. In this regard, the dataset is S

S = {(ti, Vi, Hi, Di)|i = 0...m}, (1)

where i is the index of the current data sample, ti (days) is the timestamp, m is the number of
data samples or quadruples (ti, Vi, Hi, Di) available at the time timestamp tm, Vi is the number
of COVID-19 cases, Hi is the number of recovered cases (or recoveries), and Di is the number
of deaths. The measuring unit for Vi, Hi and Di is number of people per day.

Secondary data is calculated on the basis of primary data. Three categories of secondary data
are computed. First, the number of people who have finished getting sick, with the notation Ei,
is the sum of recovered cases and deaths, i.e.

Ei = Hi +Di, i = 1 . . .m. (2)

Second, the number of people who are still sick, with the notation Si, is calculated in terms of

Si = Vi − Ei, i = 1 . . .m, (3)

and it represents a burden on the healthcare system.
Third, seven days average velocities are calculated for all Vi, Ei, and Si. The velocity of

a certain variable is denoted by the same letter as the variable, prefixed with a small letter v,
leading to the notations vVi, for the velocity of number of COVID-19 cases vEi, for the number
of people who have finished getting sick and Si for the number of people who are still sick. These
three average velocities are obtained as follows as finite difference approximations:

vΓ = (Γ− Γi−7)/(ti − ti−7), i = 7 . . .m,

vΓ = 0, i = 1 . . . 6,

Γ ∈ {V,E, S},
(4)

and they are important as they offer useful information on the trend.
As specified in the previous section, this paper focused on the simplest model of pandemic or

epidemic, namely the SI model. This model is characterized by the system of ordinary differential
equations [35]

Ṡ(t) = −βSI(t)/N,

İ(t) = βSI(t)/N − γI(t),

Ṙ(t) = γI(t),

(5)
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or the ordinary differential equation

V̇ (t) = aV (t)(N − V (t)), t ≥ τ, V (t) = 0.5N, (6)

with the parameters: a > 0, N > 0 and τ > 0 , where 0.5N is the initial condition, and t is the
independent time variable. Inserting the notation

k = 0.5aN, (7)

the analytic solution to the ordinary differential equation given in (6), which is also the response
of the dynamic system (or process) model given in (6), is

V (t) = 0.5N [1 + tanh(k(t− τ))] = Ne2k(t−τ)/[e2k(t−τ) + 1], t ≥ τ. (8)

The model in (6) describes not only an epidemic, but also any other self-accelerating process
in fields with limited resources. The term “self-accelerating process” means that each single
event generates several other similar events, and the event replication rate may vary. The term
“fields with limited resources” outlines that there are resource limitations which do not allow the
infinite expansion of the process. Therefore, the process will stop, reaching a certain unknown
size.

An example of epidemic modeled using the SI model in (6) is presented as follows. The
values of the parameters are set as

a = 2 · 10−7, N = 500 000, τ = 131 days, k = 0.5aN = 0.05. (9)

The volume graphs of an epidemic according to the SI model in (6) are presented in Fig. 2,
and they consist of the following system responses versus time: V – the number of cases, in the
s-shaped blue curve, E – the number of people who finished getting sick, recovered or died, in
the green curve, and S – the difference between V and E, indicating how many people are still
sick, in the red curve. The following key events are marked on the curves: the maximum burden
on the healthcare system, the last case, and the end of the pandemic or epidemic. Each key event
defines a timestamp and a value for the corresponding variable V, E and S.

The velocity graphs of an epidemic according to the SI model in (6) are presented in Fig. 3,
and they consist of the evolutions of the seven days average velocities versus time for V, E and S
with the graphs presented in Fig. 2. Fig. 3 shows the corresponding key events: the maximum of
each velocity, the point where vV becomes low enough, and the intersection point of vV and vE.

The example is continued with presenting the phase plane plot of the solution to the SI model
in (6), namely the presentation in the < V (t), V̇ (t) = ∂V/∂t > plane, where t plays the role of
parameter. This response is illustrated in Fig. 4, where the number of cases V is represented on
the X-axis and the velocity vV of the number of cases is represented on the Y-axis.

The differential equation in (6) is a quadratic polynomial in V, i.e. aV (N − V ), in its right-
hand term. This means that the phase plane plot is a parabola, which is shown in Fig. 4. The left
root of the parabola (0, 0) describes the beginning of the epidemic, namely the situation when the
number of cases was 0 and the velocity of the number of cases was also 0. The right root (N, 0)
describes the end of the epidemic.

When the number of cases reaches a certain limit N, the epidemic will end, and the velocity
of the number of cases will be 0. This value of N is unknown, but it exists and it can be calculated
as the right root of the parabola.
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Fig. 2. Volume characteristics in the example of epidemic evolution characterized by the SI
model in (6) and parameters in (9). Variables on axes: X-axis: time (days), Y-axis: V – number
of new COVID-19 cases per day, E – number of people finished getting sick per day, S = V −E
– number of people still sick per day.

Fig. 3. Seven days average velocity graphs in the example of epidemic evolution characterized
by the SI model in (6) and parameters in (9). Variables on axes: X-axis: time (days), Y-axis:
vV – velocity of number of new COVID-19 cases per day, vE – velocity of number of people
finished getting sick per day, vS – velocity of number of people still sick per day.
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Fig. 4. Phase plane plot in the example of epidemic evolution characterized by the SI model in
(6) and parameters in (9). Variables on axes: X-axis: V – number of COVID-19 cases, Y-axis:
vV – velocity of number of COVID-19 cases.

The above example clearly shows that the modeling using the SI model works in a similar
way to analyzing a ball flight. The modeling approach that produces the SI model is organized
in terms of the steps SI1, SI2 and SI3.

Step SI1. The points of the real COVID-19 statistics are plotted in the phase plane.
Step SI2. The values of the parameters N and a are chosen so that the parabola in the right-

hand term of (7) fits closely the COVID-19 statistics. The relationship (7) is next applied to
obtain the value of the parameter k.

Step SI3. The value of the parameter τ is found from the condition that the function V(t) in
(8) passes through the rightmost point of the COVID-19 statistics in the plane < t, V >, namely
the point (tm, Vm). Imposing t = tm in (8) and solving it with respect to the unknown τ , the
solution is

τ = tm + 0.5/k ln(N/Vm − 1). (10)

This modeling approach leads to the expression of the function V(t) given in (8). The values
of this function can be calculated in the future, thus obtaining the forecast based on the SI model.

A parabola aV (N − V ) that closely approximates the statistics points is computed at step
SI2. This is a parabolic regression, and the left root of the parabola is set to zero.

This modeling approach is employed in modeling, analysis and forecasting. The monitoring
is built upon the new statistics that come every day and are applied to the SI model in (5). The
three steps of the modeling approach are applied repeatedly every day, and new updated values of
the of the parabola parameters N and a, are computed, along with the calculation of the updated
τ , the new forecast and the new values of key events.
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The SI modeling approach was applied on 21.05.2020 to Russia using the data reported in
[31]. The results of this SI model are presented in terms of the phase plane plot illustrated in
Fig. 5. The plot shows that the parabola does not approximate the statistics with a reasonable
accuracy.

Fig. 5. Phase plane plot in the example of epidemic evolution in Russia at 21.05.2020 according
to the SI model in (6) (parabolic regression). Variables on axes: X-axis: V – number of COVID-
19 cases, Y-axis: vV – velocity of number of COVID-19 cases.

The results of this SI model are next presented after 50 days, at 13.07.2020, and are expressed
as the phase plot presented in Fig. 6 and the system responses in Fig. 7. The plots in Fig. 6 and
Fig. 7 clearly show that the results of the SI model are no longer good at all.

Obviously, the equation that holds true for all self-accelerating processes in fields with limited
resources is violated. The epidemic leaves the parabola at point X illustrated in Fig. 1.

The epidemic was, is and will be a self accelerating process. Therefore, only the second
condition can be violated, namely the amount of resources available for the epidemic has changed
at point X, which restarts with a new resource limit. This restart occurs from a non-zero level,
which means that it is necessary to build a new parabola with free, both left and right, roots.
The epidemic has lost the opportunity to travel along the parabola A, ending with approximately
200 000 cases.

That is the reason why the development of the new opportunities model is justified and mo-
tivated. It is considered that, as suggestively illustrated in Fig. 1 and Fig. 8, adding another
parabolic regression at a certain moment will improve the model performance.
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Fig. 6. Phase plane plot in the example of epidemic evolution in Russia at 13.07.2020 according
to the SI model in (6) (parabolic regression). Variables on axes: X-axis: V – number of COVID-
19 cases, Y-axis: vV – velocity of number of COVID-19 cases.

Fig. 7. System responses (epidemic volume characteristics) in the example of epidemic evolution
in Russia at 13.07.2020 according to the SI model in (6) (parabolic regression). Variables on axes:
X-axis: time (days), Y-axis: numbers of COVID-19 cases.
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Let tm be today, the official statistics saved in the dataset S defined in (1) and the seven days
average velocities computed in accordance with (4). The value of the error threshold ε > 1 is
set. The new opportunities modeling approach consists of the steps NO1 to NO4 described as
follows.

Step LO1. The current opportunity. The dataset

{(ti, Vi, vVi)|i = m− L+ 1 . . .m} (11)

is collected for which there is an approximation

vVi ≈ P (Vi) = V̇ (ti) = aVi(N − Vi), i = m− L+ 1 . . .m, (12)

namely the following inequality is fulfilled:

|vVi − aVi(N − Vi)| < ε, i = m− L+ 1 . . .m, (13)

on an as long as possible time length L, indicating that the right-hand term is suitable for the
pandemic model (6). The dataset in (11) and the parabola P (Vi) are called current opportunity.

If the current opportunity is not found, then the nearest current opportunity in the past is used.
Step NO2. The calculation of τ . The relationship (7) is applied to obtain the value of the

parameter k. The relationship (9) is next applied to obtain the value of the parameter τ .
Step NO3. Forecasting the future. The following computations are carried out for :

• the time stamp:

ti = tm + i−m; (14)

• the estimated number of COVID-19 cases:

Vi = 0.5N [1 + tanh(k(ti − τ))] = Ne2k(ti−τ)/[e2k(ti−τ) + 1], (15)

which is next rounded to the nearest integer;

• the end of the pandemic, when Vi does not change for seven days, and seven extra days are
added;

• the number of people who have finished getting sick, Ei = Vi−c(i) , where c(i) is the
prognosis of the mean time of the disease progression;

• the number Si of people who are still sick in terms of (3);

• velocities vVi, vEi and vSi using (4) and key events.

Step NO4. The forecast drift. The parameters of key events calculated for tm are saved.
The operations carried out in the framework of the new opportunities modeling approach are

summarized and illustrated in Fig. 8. The daily modeling process is illustrated.
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Fig. 8. Illustration of operations specific to the daily modeling process carried out in the frame-
work of the new opportunity modeling approach.

The forecast drift carried out at step NO4 is a prediction of forecast changes. The forecast
drift monitoring is an essential part of the new opportunities modeling approach as time series
data is accumulated and charts are drawn in order to describe how the predictions change daily.
The predictions of key events give information on expected values and timestamps of forecasted
key events. This allows the prediction of changes in the forecasts regarding the volume, intensity
and duration of the pandemic.

The model is built every day with the parameters computed for tm, and the forecasts are
calculated accordingly. All obtained values, namely Vi, Ei, Si, vVi, vEi and vSi, can be used for
operational forecast, to assess the near future for i > m.

The parameters of key events give a long-term estimate of the scale Γ, the velocities vΓ, with
Γ ∈ {V,E, S} in the context of (4), and the dates t of the key events, an understanding of what
phase of the epidemic is in, which the maximum volumes and intensities will be. In other words,
the forecast drift gives the information how the forecasted parameters of key events, namely t,Γ
and vΓ , change with respect to the current date tm.

3. Experimental Results
The new opportunities approach was applied to the official statistics of Russia, Romania,

Moldova, and the Campania region in Italy. Several new opportunities models are built in this
regard.

Table 1 given in [36] summarizes the main current forecasts of the pandemic in the first three
countries at 28.06.2021. The “Percentage” row indicates that Romania is completing the pan-
demic in terms of forecasted cases, and the dates in the bottom two lines confirm this. Moldova is
also completing the pandemic in terms of forecasted cases, but the completion dates are longer;
that is due to the very low intensity at the end of the pandemic in Moldova. Russia is very far
from the end of the pandemic.

Figure 9 given in [36] describes the current and new opportunities for Russia at 28.06.2021.
It shows that Russia met a new opportunity three weeks before 28.06.2021 and it was in the third
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wave at that date.
The current calculation of epidemic volumes for Russia, the key events and the growing

burden on the healthcare system are illustrated in Fig. 10 given in [36].
Figure 11 given in [36] displays the drift of the forecast of volumes for Russia. Figure 12

given in [36] shows that the forecast for the number of cases did not exhibit oscillations during
the previous Winter. Rather big oscillations occurred at that time.

The drift of the forecast of dates for Russia at 28.06.2021 is presented in Fig. 12 given in
[36]. Figure 12 shows that the forecast for the dates of many key events has been worsening last
week prior to 28.06.2021.

Figure 13 given in [36] offers a synthetic view on the current and new opportunities for
Romania at 28.06.2021. Figure 13 shows that Romania was firmly moving along a steep parabola
towards the end of the pandemic.

The current calculation of epidemic volumes for Romania, the key events and the growing
burden on the healthcare system are illustrated in Fig. 14 given in [36]. Figure 14 outlines that
the key event “low enough velocity” has already happened, and the two remaining key events
were expected to come soon.

Figure 15 given in [36] displays the drift of the forecast of volumes for Moldova. Figure 15
highlights that there have been no strong oscillations since the Spring of 2021.

The drift of the forecast of dates for Romania at 28.06.2021 is presented in Fig. 16 given in
[36]. Figure 16 points out again that there have been no strong oscillations since Spring of 2021.

Figure 17 given in [36] shows the current and new opportunities for Moldova at 28.06.2021.
Figure 17 indicates that Moldova has jumped at the very end of the steep parabola from it to a
small and low parabola. This leads to an increase in the duration of the epidemic, but with a low
intensity. The calculation of the epidemic volumes and their plots presented in Fig. 18 given in
[36] illustrate this fact.

Figure 19 given in [36] points out the drift of the forecast of volumes for Moldova. Figure 19
points out that there have been no strong oscillations since the Spring of 2021.

The drift of the forecast of dates for Moldova at 28.06.2021 is presented in Fig. 20 given in
[36]. Figure 20 highlights that the drifts has started to rise two weeks prior to 28.06.2021.

Figure 21 given in [36] outlines the plots of the epidemic volumes for the Campania region in
Italy at 28.10.2020. Figure 21 shows that the predicted peak load on the healthcare system was
S = 148 462 on 09.12.2020.

4. Conclusions
This paper proposed the new opportunities model and modeling approach to monitor, analyze

and forecast the COVID-19 using official statistics. The model is built upon the classical SI
model and it allows to automatically determine in real time when the epidemic is developing
naturally according to current opportunity and when there is a transition from one opportunity to
another one.

The experimental results obtained for three different countries in terms of area, economy and
population, namely Russia, Romania and Moldova, plus the Campania region in Italy, prove the
superior performance of the suggested model in comparison with other similar models including
the classical SI model. Although the data is rather old and related to 2021, the evolution of
the pandemic afterwards till nowadays further confirms the very good performance of the model
proposed in this paper.
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The limitation of the model is the need to set the values of one of its parameters. This will be
mitigated in the future research by its automatic computation as the solution to an appropriately
defined optimization problem. Another direction of future research is the development of the
karass model, which, unlike all other known models, allows to describe the multi-wave behavior
of the pandemic, and it will replace the SI model in the current new opportunities model.
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