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Abstract. This paper, dedicated to Acad. Florin Gheorghe Filip, at his 15th anniver-
sary as the Chairman of the Information Science and Technology Section of the Romanian
Academy, suggests an approach to describe the data obtained in biomonitoring studies using
mosses, on the example of the Republic of Moldova. In total, 33 moss samples were col-
lected on the territory of Moldova, the elemental composition of which was determined by
neutron activation analysis and atomic absorption spectrometry. At the first stage of the work,
a correlation analysis was carried out with the ranking of data in the order of decreasing total
correlation, which made it possible to preliminarily reduce the number of elements to two
factors. At the stage of data sorting, iron, the content of which in the environment can be
associated with anthropogenic activity, was chosen as the element determining the rank. The
next stage of work was data smoothing using a discrete cosine transform, for which the codes
were rewritten and the algorithm was ported to the Excel-VBA environment, which is most
suitable for preprocessing and graphical display of experimental data. Also, an algorithm was
developed for determining the number of linearly independent (basis) vectors in which the
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matrix itself can be decomposed. Two principal roots were identified, of which the larger one
is several thousand units, and three lower roots, which are less than unit were excluded, since
their absolute values differ by two to three or more orders of magnitude downward from the
eigenvalues of the influencing components. The paper is dedicated to Acad. Florin Gheorghe
Filip, at his 15th anniversary as the Chairman of the Information Science and Technology
Section of the Romanian Academy, and at his 75th anniversary.

Key-words: Algorithm; correlation analysis; data preprocessing; moss biomonitoring.

1. Introduction
The world population is currently over 7.9 billion people. More than 200 thousand are born

daily and around 150,000 people die every day around the world. Of these, about 100,000 die
from age-related diseases, about 19,000 – from air pollution, an estimated 14,000 people die
every day from water pollution and roughly 10,000 deaths per day a caused by COVID-19 as
highlighted in [1].

These figures demonstrate that air pollution is one of the environmental health risks in the
world, and require elaboration of urgent mission to reduce the levels of pollution and to save
millions of lives [2]. Controlling anthropogenic air pollutants is a very complex problem and
is currently done through automatic devices, however they provide data on a limited number of
pollutants and economic aspects have to be integrated, particularly their high costs prevent the
development of dense monitoring networks [2, 3]. The ability of plants to assimilate trace metals
from the surrounding atmosphere and bioaccumulate them in their tissues has made plants the
most suitable biological air monitors [4].

Passive moss biomonitoring is low-cost monitoring technique widely applied in many Eu-
ropean countries [5–8] to asses the spatial distribution of airborne pollutants in ecosystems [9].
Mosses are ideal to evaluate air pollution, because of their diversity of habitats, structural sim-
plicity and rapid multiplication rate. Mosses can accumulate metals above their physiological
needs due to the absence of cuticle in their tissues and the abundance of sites with exchangeable
cations in their cell wall [10]. Although the heavy metal concentration in mosses provides no di-
rect quantitative measurement of deposition, this information can be derived by using regression
approaches relating the results from moss surveys to deposition monitoring data [5].

Nowadays, Factor analysis (FA) has become a principal statistical method of investigation
in environmental studies and is widely used method in evaluating the resulting concentrations
from biomonitoring using mosses [6–8, 11]. FA is a multivariate tool which allows to determine
both the source apportionment and composition of the sources without a priori knowledge of
the sources and their composition [12]. It explains the variance of observed variables using a
smaller number of potential variables – the factors. The goal is to reduce the number of variables
and reveal the structure of the relationship between variables. The weaknesses of FA lie in the
ambiguity of the estimation of factor parameters (i.e., the dependence of the FA result on the
rotation used) and in the need to specify the number of common factors before performing the
analysis [6].

This paper is dedicated to Acad. Florin Gheorghe Filip, at his 15th anniversary as the Chair-
man of the Information Science and Technology Section of the Romanian Academy, and at his
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75th anniversary. The first and the fourth authors of this paper are grateful to Acad. Filip for
enabling their contact, which led to the start of a fruitful cooperation.

This paper is built upon authors’ recent paper [13] on processing, neural network-based mod-
eling of biomonitoring studies data and validation on Republic of Moldova data, and it proposes
an approach for describing the data gained by biomonitoring with the use of mosses on the ex-
ample of data obtained for the Republic of Moldova in 2015/2016 moss survey. The paper is
structured as follows: materials, methods, results and discussion are treated in the next section.
Section 3 is focused on data processing. The covariance matrix and the principal component
extraction are presented in Section 4. The conclusions are drawn in Section 5.

2. Materials, Methods, Results and Discussion
During the Spring of 2015, 33 samples of moss Hypnum cupressiforme were collected on the

entire territory of the Republic of Moldova. The studied areas as well as the procedure of samples
collection and preparation for chemical analysis are described in [14]. A part of the results of the
research conducted in this paper is summarized in [15].

Two analytical techniques, neutron activation analysis and atomic absorption spectrometry,
were applied to determine the content of 42 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb,
Hf, Ta, W, Pb, Th and U) in moss samples. The detailed description of the performed analysis is
given in [14].

The content of determined elements in moss samples is presented in Table 1 given in [15].
According to the approach proposed in the present study, it is very important to compare the
distribution of elements with a priori measured parameters of the model, for example, with ge-
ographic coordinates, the level of industrial energy consumption, etc., that were not taken into
account when applying FA. In the present study, a table of 34 rows (settlements) and 34 columns
(the first two columns are geographic latitude and longitude) was taken for analysis, the remain-
der are the content of 32 elements in mosses. It should be emphasized that the squareness of the
table is not required. The coincidence of the number of geographic points with the number of
elements supplemented by two columns of geographic coordinates should be regarded as occa-
sional. In general, the number of rows can be either more or less than the number of columns,
but it cannot be less than the number of linearly independent components that define the rank of
the covariance matrix of the model.

The first stage in the work was the correlation matrix compiling, which is necessary for
two reasons: both for a visual representation of what is “what looks like” and for ranking the
elements according to the degree of compatibility. Correlation analysis is a statistical method of
data processing by which density of correlation ratio between two or more (32 ones in this paper)
variables is measured [16].

In the correlation matrix, the correlation coefficient close to zero means that the values, most
probably, are unrelated. In practice, values less than 0.5 in modulus are no longer subject to
consideration and are usually not tried to be reduced to a single formula. Table 2a given in [15]
shows the correlation coefficients between the studied elements. For visual appearance, con-
ditional formatting was applied to the table using a color scale: the closer to 1.0 the correlation
coefficient, the stronger the green tone dominates in the color. Uncorrelated cells are colored with
a predominant use of red tones. Finally, intermediate values are colored yellowish. However, in
this form, as it will be shown in the next section, the correlation matrix is relatively uninforma-
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tive. It becomes much more apparent if the elements are ranked in the order of decreasing of
total correlation as it will be shown in the next section. In this case, the sum of the correlation
coefficients for the row is used as a variable for sorting the rows. Also, the elements with high
values of the correlation coefficient are accumulated closer to the upper left corner of the table,
while the elements with low values of the correlation coefficient remain in the lower right corner.

According to Table 2b given in [15], a maximum of two factors are required to describe the
initial data. The first will allow describing the group behavior of an association of 20 elements
from chromium to sodium (in the order used after ranking the correlations, i.e. Cr, Ta, Co, Th,
Tb, Fe, Sc, La, Rb, As, Cs, Yb, Ce, Eu, Sm, Ni, U, Hf, Tm, Na). The second group, possibly, will
consist of an association of four elements Ti, Al, Mg, V, which do not have high correlation with
chromium, but confidently correlate with each other with a coefficient no less than 0.96. Seven
elements Ba, Sb, Ca, K, Mn, Zn, Sr, Br have very low correlation coefficients with other groups
of elements, which did not allow distinguish them into separate factor. It should be mentioned
that in the entire table, only a couple of cells have negative values. They are highlighted in purple
and in fact their values are more likely to be zero than negative.

3. Data Preprocessing
According to [17] Box and Wilson (1992), when working with a dataset, dimensioning of

the original data is required, i.e. reduction them to a comparable scale. In our case, the con-
centration of various elements at different collection sites varies from hundredths to thousands
of µg/g, i.e. by five orders of magnitude. For this reason, direct comparison of data on concen-
trations is meaningless. If to follow directly the recommendations of Box, then for each of the
32 determined elements it would be necessary to calculate the average value for all geographical
locations and set it as zero, relative to which variability of data up and down would be reduced
using a linear (proportional) transformation to the range [–1, 1].

Such approach, being mathematically flawless, still raises serious criticism from a physico-
chemical point of view. First, for further decoupling of the basis vectors of pollution, in order to
avoid the so-called rotational ambiguity is very useful to draw on considerations of nonnegativity
of concentrations.

In this sense, it would be preferable to reduce all data to the range [0, 1]. But this is not a
solution either, since the loss of obviousness of more representative elements in comparison with
“small impurities” is not compensated with the achieved simplicity.

For the analysis of pollution in the studied area, the most reasonable would be the transition
from the concentrations to their decimal logarithms. In this case, the variation for each element
will practically be reduced to a single range, since the concentrations scattering practically in
none of the cases does not exceed an order of magnitude. However, the hierarchy of concentration
precedence will also remain, since the logarithm is a monotonic increasing function.

Table 3 given in [15] shows the ranking in decreasing order of values of the correlation
coefficients between the logarithms of the measured concentrations. The comparison with Table
2b given in [15] shows that the order changes insignificantly. The elements that had tendency to
associate in one group remained in their groups. But after switching to a logarithmic scale, the
changes (displayed by the color range) became smoother and the color change became softer.

The next step of data compilation is an attempt to sort them not by correlation coefficients,
but by primary values of concentrations. As preliminary data processing showed, neither the
alignment of points in latitude, nor in longitude, nor in distance from any geographic or admin-
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istrative center does not bring any order to the rather chaotic spread of concentration values.
Consequently, we have renounced to this approach.

It would be ideal to plot the data in descending order of pollution. However, that sequence of
lines (the order of geographical locations) that leads to a decrease in the content of one element,
will not necessarily lead to a decrease in the content of another. Nevertheless, most of the data
have high, close to 1.0, correlation coefficients with the leader (either chromium in conventional
analysis or tantalum in logarithmic analysis). All correlations for the logarithms of concentra-
tions, without exceptions, are positive. Therefore, without loss of generality the list can be ranked
by almost any element. Iron was chosen as the element determining rank, since iron content in
the environment may be associated with anthropogenic activity. In addition, unlike tantalum or
thorium, iron is not a trace element and is at the beginning of the list of prominently represented
elements, second only to the main soil elements Ca, K and Al, and significantly exceeding Na,
Mg, and other elements. Further in the present study, the data will be used, in which the order of
the human settlements – sampling points were ranged by the iron content.

The next step in data preparation for statistical processing is ranking of elements by repre-
sentativeness. For this purpose, the matrix, in the rows of which there are elements and their
concentrations, and the leading column contains the names of settlements sorted “by iron” is
transposed. Now the leading column contains the names of the elements, and the final column
contains the integral representation (the sum of the logarithms of concentrations) of the elements
throughout the territory. After sorting of the elements according to the integral contamination
calculated in this way, the matrix acquires the form in which in the rows of the leading column
geographical locations and the elements themselves are listed in the first row. In all cells of the
table, the logarithms of the measured concentrations of elements will be given.

Assuming that the content of elements is strongly correlated, it is not supposed to have up-
ward or downward outliers in the rank distribution. They should be more or less smooth and
certainly monotonous, for which the use of anti-aliasing seems to be useful.

One of the efficient and stable smoothing procedures is described in detail in [18]. That pro-
cedure is based on discrete cosine transform (DCT), it provides reliable smoothing of equidistant
data in one or more dimensions.

The underlying “penalized” approach to least squares method will be briefly discussed as
follows, in the specific case of successful application to smoothing of high-frequency noise of a
spectroscopic signal. This approach consists in minimizing an objective function (or criterion)
that balances the fidelity to the data, measured by the residual sum-of-squares (RSS), and a
penalty term (P) that reflects the roughness of the smooth data in terms of seeking to minimize
the objective function

F (ŷ) = RSS + s · P (ŷ) = ||ŷ − y||2 + s · P (ŷ). (1)

The notation ||ŷ − y||2 in (1) indicates the squared Euclidean norm, namely the sum of the
squares of the deviations, and the penalty term gives the degree of signal coarsening based on
the divided differences of the second order (generalization of the concept of derivatives to the
discrete case):

P (ŷ) = ||Dŷ||2, (2)

where D is a tridiagonal square matrix, that assumes the simplest form for the equidistant data
(the rank goes exactly with a unit step):
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D =


−1 1 0 . . . 0
1 −2 1 . . . 0
. . . . . . . . . . . . 0
0 . . . 1 −2 1
0 . . . 0 1 −1

 . (3)

The decomposition of the matrix D in terms of eigenvectors gives the representation

D = UΛU−1,

Λ = diag(λ1, . . . , λn),

λi = −2 + 2 cos[(i− 1)π/n], i = 1 . . . n,

(4)

where λi, i = 1 . . . n are the eigenvalues. For a smoothed signal, the following expression is
applied:

ŷ = U · (In + s ·Λ2)−1 ·UT · y = U · Γ ·UT · y,
Γ = diag(γ1, . . . , γn),

γi = {1 + s[2− 2 cos[(i− 1)π/n]]2}−1, i = 1 . . . n,

(5)

and In is the nth order identity matrix.
Further, the DCT and the inverse cosine transform (IDCT) are applied. DCT is similar to the

Fast Fourier Transform, but ignores its imaginary (sine) part. The formula to compute the DCT is

t(u, v) = c(u)c(v)

N−1∑
k=0

M−1∑
l=0

I(k, l) cos[(2k + 1)uπ/(2n)] cos[(2l + 1)vπ/(2m)],

i = 0 . . . N − 1, c(i) =

{√
1/N if i = 0,√
2/N if i ̸= 0,

(6)

and the formula to compute the IDCT is

I(k, l) =

N−1∑
u=0

M−1∑
v=0

c(u)c(v)t(u, v) cos[(2k + 1)uπ/(2n)] cos[(2l + 1)vπ/(2m)]. (7)

The meaning of the sequential application of the DCT and the IDCT is to select the optimal
parameter s, which sets the cutoff of the frequency response of the filter Γ:

ŷ = U · Γ ·DCT (y) = IDCT (Γ ·DCT (y)). (8)

The codes were rewritten and the algorithm ported to the Excel-VBA environment, which
is used in preprocessing and graphical presentation of experimental data. It makes sense to set
the parameter s with a logarithmic step. Fig. 1 given in [15] demonstrates how the frequency
response of Γ changes when it is varied in the range of five orders of magnitude.
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In its turn, changing the frequency response of the filter affects the degree of data smoothing.
Fig. 2 given in [15] shows a set of partially smoothed profiles for K, the element occupying the
5th position from the end position in terms of the degree of correlation with other elements. At
high negative value (p = –5), there is no smoothing and the approximating curve passes through
each experimental point. At high positive value (p = 5), as an approximating array an almost
horizontal straight line passing through the center of the original array is obtained. Smoothing
was reduced to total averaging, that led to a significant loss of information.

Also, an auxiliary program was written and built in order to optimize the smoothing param-
eter by finding the maximum of the cross-validation function as the generalized cross-validation
(GCV) expressed as

GCV (s) = n

n∑
i=1

(ŷi − yi)
2/
[
n−

n∑
i=1

(1 + sλ2
i )

−1
]2

(9)

In this version, smoothing occurs completely automatically and does not require initial setting
of parameters, and the result corresponds not only to the best from the point of view of visual
comprehension smoothing, but to mathematically correct filtering out of noise and experimental
errors without losing meaningful information. It is clear that for different elements the primary
degree of profile smoothness is different. The more to the right is the element in the cross-
correlation table, the worse it is. Fig. 3 given in [15] shows the spline for Sr, occupying the last
place in the table.

Smoothing of th elements from the middle of the table is is easily acceptable, since there
is less initial data variability. Fig. 4 given in [15] shows smoothing for Cr, an element in the
middle of the correlation table. In this case, p = 1.5, i.e. 20 times less coercion was applied to
the primary data than in the case of Sr.

Fig. 5 given in [15] shows a smoothed curve for Fe, which differs in the minimum way from
the primary one and the smoothing parameter s = 10p is still 100 times less than for Cr.

It can be seen that the element Fe was justifiably chosen for the ranking. Although Ta and Th
seem to show even higher adherence to associativity with other elements, they they are signifi-
cantly less representative in concentration, which overshadowing them, on the set of signs they
are of lesser importance than iron.

4. Covariance Matrix and Principal Component Extraction

After a matrix of 1088 elements was compiled (34 rows of sampling points and 32 columns
of the content of chemical elements, not counting two geographic coordinates), the next step is
to determine the number of linearly independent (basis) vectors into which the matrix can be
decomposed.

From the point of view of linear algebra, the problem is formulated as follows. The matrix of
experimental data D can be represented as the product of two smaller matrices C and ST . In this
case, the conventionally vertical matrix (represented as a set of columns) C is a representation
of the “concentration” profiles for each simulated component in the system. The word “concen-
tration” is put in quotations because in fact it is referred to a set of values of the factors Fi for
each collection site. The height of this matrix is qual to the total number of collection sited, in
our case 34. The number of columns is a priori unknown, but this paper aims to minimize it in
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order to represent the decomposition of the data matrix D in terms of the lowest dimensional in
terms of

D = CST +E, (10)

where E is an error matrix, that means a residual variation in the dataset that is not associated
with any chemical contribution.

It needs to be emphasized once again that the number of columns in the concentration matrix
C corresponds to the dimension of the basis of independent variables. At the same time, ST is a
transponsed matrix of “spectra” of the corresponding polluting factor. In the matrix S, the rows
are the spectra of individual (or expected) pollutants, the number of which is equal to the rank (the
number of linearly independent components of the matrix D), and the columns, if considering
them as spectra, are the readings in the corresponding spectroscopic channel. In our case, the
role of the spectrum is played by the content of each of the elements, and the number of the
spectroscopic channel is the number of the chemical element (namely, the ordinal number in the
correlation table).

The matrix of obtained data D ∈ ℜNR×NC is assumed to be information redundant, i.e. the
number of rows in it NR (the number of collection sites) is obviously greater than the number of
independent components in a chemical mixture, and the number of columns NC is the number of
individual chemical elements that are similar to spectroscopic channels, i.e. allow to distinguish
one spectrum from another outside the noise by the unique concentration ratio of 32 elements
included in the analysis. The concentration ratio of elements is the “fingerprint” or chemical
spectrum of pollution.

Actually, the whole problem is the most reasonable decoupling of D into factors C and S,
and to do this blindly when a priori information about the reference spectra and concentrations
is not available. It is clear that such a solution is ambiguous, but the information obtained during
the decomposition is valuable in itself. The problem is formulated in terms of the Multivariate
Curve Resolution Alternating Least Squares (MCR-ALS).

A very similar in appearance (up to alphabetical symbol) and mathematically completely
equivalent statement of the problem is used in the method of independent component analysis
(ICA) characterized by

X = AST +E, (11)

where A ∈ ℜI×N is the so-called mixing matrix in the notation specific to ICA and also the
concentration matrix in the notation specific to MCR ALS. The number I of rows in A is also
the number of sampling sites, and the number N of columns is the dimension of the basis of
independent vectors. The matrix ST ∈ ℜN×J is the transposed matrix of reference spectra,
where N is the number of standards, and J is the number of determined chemical elements-
marker. The error matrix, which also appears in (10), is E ∈ ℜI×J .

The integers I and J , are also the number of rows and columns, respectively, of the data
matrix X. The integer N is also the number of components included in the bilinear form of the
expansion of (11). ICA algorithms try to find the “decoupling” matrix W, which is the inverse of
the mixing matrix A according to

ŜT = WX, (12)

where ŜT is the characterization of the parent matrix ST .



284 G. Duca et al.

According to (12), when W = A+, i.e. W is the pseudo-inverse of the mixing matrix A, the
estimated source signal ŜT will be equal to the initial (usually called original) source signal ST :

ŜT = WX = WAST = ST . (13)

Although the described algorithms have been already implemented for many times, for exam-
ple, in Matlab and in specialized literature there are numerous references to distributives, most
of these links do not allow an external user to get real access to the running software. In ad-
dition, all published algorithms use iterative procedures for determining the decoupling matrix,
therefore the scope of the present study is to develop the own package for blind processing of
spectroscopic sets, focused on using the most efficient calculation methods, so that iterative pro-
cedures can be avoided wherever possible, in particular to refuse to basic use of fittings in the
least squares method.

This paper produces original techniques suitable for solving some problems of spectroscopic
recognition and separation. If at the first stage to leave without consideration the problem of
rotational and massive ambiguity of the definition of the basis vectors, then obtaining of their
“working set” is reduced to solving the problem of the eigenvalues of the covariance matrix as
performed by Danilevsky’s method [19]. The essence of Danilevsky’s method is to reduce the
matrix A using n− 1 similar transformations to a similar Frobenius matrix P:

P =


p1 p2 p3 . . . pn−1 pn
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0

 . (14)

In the Frobenius form, only the elements of the first row and units below the main diagonal
are present in the matrix. All other elements are equal to zero. This form is ideal for generating
characteristic polynomials and determining eigenvalues. The coefficients of the characteristic
polynomial are obtained as follows by expanding the determinant of the matrix in the first row:

det(P− λIn) = (p1 − λ)(−λ)n−1 − p2(−λ)n−2 + · · ·+ (−1)n−1pn

= (−λ)n + p1(−λ)n−1 − p2(−λ)n−2 + · · ·+ (−1)n−1pn = 0.
(15)

Danilevsky’s algorithm is guaranteed to give a set of coefficients of the characteristic polyno-
mial. Even in the case of disperse matrices with singularities, when the “leading” element of the
row becomes zero, then the characteristic polynomial splits into the product of two characteristic
polynomials, each of which can be obtained by the same algorithm. Since Danilevsky’s method
is described with sufficient details in [19], this paper will not dwell on it in more detail.

An important place is occupied by the choice of an automated software algorithm for finding
the roots of the characteristic polynomial. The overwhelming majority of known algorithms for
finding roots are suitable for general function (not only for polynomials), but they have two hard-
to-remove drawbacks, (1) and (2): (1) the necessity of choosing a starting approximation for a
root and setting it manually, that is incompatible with the concept of “automated procedure”;
(2) uncertain behavior of the algorithm in the case of multiple roots, since this zero slope of the
function graph appears in this case, which excludes the use of tangent or secant methods. Among
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other things, in (2), the function can have the same sign to the left and right of the root, which
excludes dichotomy.

An interesting algorithm for calculating the real roots of polynomials was developed by I.
Kostin and posted for general use at [21]. The main idea of this algorithm is quite simple and
can be summarized in two sentences. First, the real root of the polynomial is always located in
the area of monotonic variation of the polynomial, i.e. between the roots of the derivative of the
polynomial. Second, in turn, the derivative of the polynomial is also a polynomial, however of a
lesser degree, and, having found its real roots, it is necessary to search for the roots of the original
polynomial between the roots of the derivative by dividing the segment in half.

It should be noted the excellent level of comments within the text of the program posted at
[20] and the impeccable quality of its work. As far as this paper is concerned, over several years
of intensive use, both for practical purposes and for specially organized “difficult cases” with
multiple roots, very widely spaced groups of roots of high degree polynomials, the authors have
not found a single program failure.

Having received a set of eigenvalues, it is then necessary to discriminate between them. This
is illustrated in Table 3 given in [15].

The point is that the method of principal components is based on the fact that the contribution
of the basis vector to the variation is the greater, the greater its eigenvalue. Therefore, the lower
roots, as a rule, are responsible not for significant changes in the spectrum, but for random noises.
In any case, they do not make a significant contribution to the explained part of the dependencies.
For this reason, they should be excluded from the scheme of further analysis, as illustrated in
Fig. 6 given in [15]. In the case treated in this paper, it would seem appropriate to leave the two
principal roots, of which the larger one is several thousand units, and exclude the three lowest
roots, which are less than 1.0.

The resulting set of roots of the characteristic polynomial coincides with the number of lin-
early independent basis vectors, only for ideal spectra without noise. In practice, both for exper-
imental and model sets, the eigenvalues of the lowest absolute value give eigenvectors that only
formally represent the “basic standar”, but in fact do not contain any information except noise.
But such spectra, firstly, are easily determined visually, and secondly, insignificant eigenvalues
can be deleted even programmatically, since their absolute values differ by two to three or more
orders of magnitude from the eigenvalues of the really influencing components.

The least squares method was applied in the previous section. However, metaheuristic algo-
rithms are also popular recently as, for example, quantum annealers [21], monarch butterfly op-
timization algorithms [22], slime mould algorithms [23], particle swarm optimization algorithms
[24], and string theory algorithms [25]. These algorithms are efficient, however the mathematical
guarantee of their convergence is generally not solved.

5. Conclusions

This paper developed an approach to describe the biomonitoring data obtained for moss sam-
ples collected in the Republic of Moldova. At the first stage of the work, using correlation
analysis it was possible to reduce the number of determined chemical elements to two factors.
Iron proved to be suitable element for data ranking. The data smoothing was performed using
a discrete cosine transform, for which the codes were rewritten and the algorithm was ported to
the Excel-VBA environment.
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An algorithm for determining the number of linearly independent (basis) vectors in which
the matrix itself can be decomposed was developed. Two principal roots were identified, of
which the larger one is several thousand units, and three lower roots were excluded from further
discussion.

Future research will be focused on the continuation of the description of the data processing
procedure. Being relatively easily understandable, the approach will be applied to data measured
in other representative applications including well-being [26], evolving systems [27] and telesur-
gical applications [28].
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[25] L. RODRÍGUEZ, O. CASTILLO, M. GARCÍA VALDEZ and J. SORIA, A new meta-heuristic op-
timization algorithm based on a paradigm from physics: string theory, Journal of Intelligent & Fuzzy
Systems 41(1), 2021, pp. 1657–1675.

[26] F. G. FILIP, Automation and computers and their contribution to human well-being and resilience,
Studies in Informatics and Control 30(4), 2021, pp. 5–18.



288 G. Duca et al.
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