
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 27, Number 1, 2024, 1–18

Multi-Function Scan Circuit
for

Assisting the Parallel Computational Map Pattern

Mihai ANTONESCU* and Gheorghe M. STEFAN

University Politehnica of Bucharest, Romania, Faculty of Electronics, Telecommunications and

Information Technology

Email: mihai.antonescu@upb.ro∗,gheorghe.stefan@upb.ro
∗ Corresponding author

Abstract. Some parallel computing patterns can be accelerated using appropriate
networks of simple circuits. We propose a solution, based on the Beneš-Waksman
permutation network, which is adapted to efficiently accelerate not only permutation, but
some of the most used parallel computational patterns such as: pack, prefix operations and
reductions. The structural context considered for deploying our circuit is the map parallel
pattern represented by an array of computational elements. The developed network receives
a vector from the map array and outputs a vector for functions such as permute, pack, prefix
sum (thus closing a first global loop over the map array of cells). For reduction functions
(add, min, max) the network returns a scalar (thus closing a second global loop over the
map array). With these improvements, this network adds circuit support for frequently used
functions, in addition to map-type functions performed in the array of computing elements.
While for reduction functions the frame of the permutation network can be easily adapted, for
prefix functions and for the pack function new forms of implementation are proposed. The
cells of the Beneš-Waksman network are redesigned to support the additional functionality.
Some applications are then presented to emphasize the utility of our design.

Key-words: Benes network; General-Purpose Accelerator; Multi-Function Permutation
circuit; Scan Circuit

1. Introduction
The most intuitive parallel computation pattern is the n-cell map pattern (see p. 21 in [1]).
Besides this pattern there are other patterns that can be easily implemented in software, although

4 Mihai Antonescu, Gheorghe M. Ştefan1. INTRODUCTION

their procedures are time consuming. Thus the gains obtained using the map pattern are
diminished if patterns such as reduction, prefixes, pack [1] don’t benefit from appropriate
hardware solutions. There are two main categories of patterns which we will consider in our
approach: (1) input data is only rearranged, as for the permute and pack functions, and (2) input
data is submitted to simple operations such as addition or comparison, as is the case for prefix
and reduce functions. The solution we adopt is to improve the functionality of each cell of a
Beneš-Waksman permutation network [2–4].

In the following, we use the term scan function as a generic name to specify functions whose
input and output are both vectors. The functions we consider (see page 21 in [1]) for integration
in the same circuit are:

• scan functions: permute, pack, prefix sum (a typical scan function).

• reduction functions: add, min, max.

The depth of these circuits is in O(log n). The size for the generic scan functions is in O(nlog n),
while for the reduction functions the size is in O(n). Taking into account the frequency of use for
these functions, in the case of a general parallel computing system, the circuit implementation for
any one as a distinct structure is not efficient. However, it may be effective to design a structure
able to perform all these functions in O(log n) time with a O(nlog n) sized circuit. Such a circuit
has numerous applications of interest, some of which will be described in Section 7.

The most commonly used functions are the reduction functions. They appear in linear
algebra computation, in vector and matrix multiplications, with direct applications in machine
learning algorithms used today. It is such an important operation, that most parallel computation
frameworks include it as a primitive [5].

The prefix sum function can also be found as a primitive in some parallel frameworks
(for example mpi [5]). It can also appear in algorithms such as counting, sort or random
number generation in an arbitrary probability distribution, enumerations (counting the number
of true elements up to a point), pack (as explained below), distribute (copy elements to multiple
locations, although possibly needing multiple scans) and sparse matrix-vector multiplication [6].

The pack function is used to separate marked from unmarked values in a sequence of data.
One common usage of this type of separation is selecting non-zero values (while preserving their
order) from zero values. Another use is in Convolutional Deep Neural Network for the pooling
(sub-sampling) stage with various strides.

Permutations are another data reorganizing function. Some notable permutations are:
reversals, perfect shuffle, matrix transpose computing (when processed as a vector) [7].

The vast majority of currently used multi-core engines don’t have circuit support for the
previously listed functions. They are programmed [6] [8] [9] with performance limited mainly
by the inter-core communication issues or due to the limited bandwidth with the system memory.
Processing these functions in the software layer is relatively slow and current circuit approaches
are based around single function circuits, tailored specifically to one application. The support
offered by the circuit we propose improves the performance of a many-cell computing engine by
removing the limitations imposed by the inter-communication in a map array of cells while also
supporting multiple functions for various use cases in different applications. The term remove
was used because skillful programming techniques combined with pipelining can negate the
effects of the network latency. An example is shown in [10] and additional examples are shown
in Chapter 7.

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern 5

The backbone circuit which we chose for further development is the Beneš-Waksman
permutation network. It offers the permutation scan-type function by design, and compared
to other network topologies (as seen in [11]), its connections easily support the generic reduction
shape with which we decided to start our design approach.

Therefore, the main contribution of the work presented in this paper is integrating, on the
same network, more than one frequently used function for currently accelerated applications
running on a linear array of computing elements.

In Section 2 we present the functions accelerated using our circuit. In Section 3 the pipeline
implementation is presented. The structure of the multi-functional cell is described in Section
4 , while in Section 5 a sequential implementation is introduced. Section 6 contains synthesis
results of our proposed architecture. Section 7 exemplifies the use of the proposed multi-function
network.

2. The System

2.1. The Map Scan-Reduce architecture
The system configuration in which we integrate our multi-function circuit is represented in Fig.
1, where:

• CONTROL: is a mono-core processing element used to send in each cycle an instruction,
through the log-depth net DISTRIBUTE, to be executed in each cell of the MAP section

• MAP: is a linear array of cells, each featured with an execution unit and a big register
file which allow the distribution of a large number of vectors along itself. Each cell also
contains a Boolean value indicating whether the cell is active or not.

• SCAN: is a log-depth programmable generic scan network whose structure and functions
are described in this paper.

REDUCE output is the right most output of the SCAN net. In most implementations this output
returns to CONTROL, starting form the vector provided by MAP, the sum of components or the
minimum or maximum value.

Fig. 1. The cellular system with two global loops: through the vector received back from SCAN and
through the scalar received by the CONTROL processor from the REDUCE output.

6 Mihai Antonescu, Gheorghe M. Ştefan2. THE SYSTEM

The SCAN net receives from MAP a n-component vector and returns a vector of the same
size, thus closing the first global loop over MAP. The output REDUCE returns a scalar to
CONTROL. This scalar can be used by CONTROL to close through the DISTRIBUTE net a
second loop over the MAP array.

2.2. Scan functions

2.2.1. The permute function

The generic shape of the circuit we propose is based on the permutation network introduced
by Václav E. Beneš and optimized by Abraham Waksman, further called the Beneš-Waksman
net. The recursive definition of the network in represented in Fig. 2. The cell used to build
the network has two data inputs, x2i and x2i−1. The outputs, y2i and y2i−1, can be stored in
registers allowing the pipeline connections in the net. In our implementation, each input is a
pair of words: x j = {v j,a j}, for j = 1,2, . . . ,n, where: v j is the component of the vector to be
permuted, while a j is used to control which input arrives at which output specifically. In the first
layer of the network a j is a (−1+ 2log2n)-bit word. Each layer “consumes” one bit (the least
significant), such that at each input of the last layer a j we find a single bit. An example of an
8-input Beneš-Waksman permutation network is given in Section 3.1.

The elementary Permute cell has two inputs and two outputs and is comprised of two
multiplexers. These multiplexer are connected such that the selection bit (least significant bit
of a j) decides if the outputs are identical to the inputs or if the inputs are switched.

Fig. 2. The recursive definition of the n-input permutation network, Pn, introduced by Václav E.
Beneš and optimized by Abraham Waksman.

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern2.2. Scan functions7

The size and depth of a n-input permutation net are:

Sperm(n) = Sperm(2)× (1−n+nlog2n) ∈ O(nlogn)

Dperm(n) = Dperm(2)× (−1+2log2n) ∈ O(logn).

Thus, both size and depth are kept within acceptable limits to be realized as circuits.
The current use of the Beneš-Waksman net is only for permutation. The cell is a simple

switching circuit, further called permute, which can be programmed, with one bit, pi, to
perform the following function:

{y2i,y2i−1}= pi ? {x2i−1,x2i} : {x2i,x2i−1}.

2.2.2. Pack function

In many vectorial computations we are faced with the occurrence of values of no interest
distributed along a vector. The pack function could be considered a dynamically configured
permutation where each component of the input vector X is accompanied by a predicate
indicating if it is of interest or not. All the components of no interest are discarded to the right
side of the vector, while the useful components are maintained in the left part of the vector in
order of appearance.

Its recursive definition closely follows that of the Permute function (Fig. 2), with two main
differences: (1) the inputs and outputs it has and (2) the last (−1+ log2n) layers are dummy cells
with {y2i,y2i−1}= {x2i,x2i−1}. On the first log2n levels the pack cells receive:

x j = {v j,enable,destination j}

If enable = 1, then destination j is used in computing each cell’s permutation according to
the position of v j in the output vector (one bit per cell). The outputs of each cell is y j =
{v j,enable,destination j} such that in the first log2n layers the “destination” field is consumed.

2.2.3. Prefix functions

Prefix functions are a subcategory of scan functions whose outputs at each position can be seen
as a reduction operation performed on all previous values. Applications will be discussed in
Section 7. The proposed applications will require two types of prefix functions, one over the data
vector (using the proposed network) and one over the Boolean/activation vector (using a separate
or-prefix network).

Sum prefixes function is defined on n-component vectors, X = [x1, . . . ,xn], and and provides
Y = [y1, . . . ,yn] where: y1 = x1, yi = yi−1+xi, for i= 2, . . . ,n. An optimal recursive definition [12]
for implementing the associated circuit is represented in Fig. 3, where the function performed by
the elementary cell is:

{y2i,y2i−1}= {(x2i−1 + x2i),x2i−1}

for i = 1, . . . ,n/2.

8 Mihai Antonescu, Gheorghe M. Ştefan3. Log-DEPTH PIPELINED VERSION

Fig. 3. The recursive definition of the n-input prefix network, PXn.

2.3. Reduction functions
An operation applied over all values in the input vector resulting in a scalar value (or conversely,
the right most output of a prefix function) represents the reduction function. Functions of interest
contain: add (yn = ∑

n
1 xi), min (yn = MINn

1 xi) and max (yn = MAXn
1 xi).

3. Log-Depth Pipelined Version
The implementation of all scan functions, mentioned in the previous section, on the recursive
shape of the permutation net requires some work for redefining network cells.

3.1. Permute network: the generic structure
For the particular case of n = 8 the permutation network is exemplified in Fig. 4. According to
the definition provided in Fig. 2, three cells are dummy cells. They are simply registers to keep
the pipe stages aligned.

3.2. Pack on the permute shape
For the pack function the network is used to perform a permutation whose configuration is
specified by {enable,destination}. The destination label for each input is computed using
the prefix add scan function applied to the Boolean activation vector. The resulting vector
will contain the enabled scalars in positions specified by destination (a (log2n)-bit number).

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern3.3. Prefix sum implementation on the permute shape9

Fig. 4. The generic structure of the permute network for n = 8.

Subsection 7.3. exemplifies this concept in the context of the Pooling application. According to
this information, each cell from the first log2n stages of the net, make the following decision:

1. if both inputs are not enabled, then the scalars are propagated as they are.

2. if only one input is enabled, then the least significant bit of the enabled input decides the
switch.

3. if both inputs are enabled, then the destination’s least significant bit from the first input is
used to decide the switch.

After each stage, destinations are shifted one position to right. The last (−1+ log2n) stages
of the net consist of dummy cells, each letting its inputs pass unswitched (as seen in Fig. 5).

3.3. Prefix sum implementation on the permute shape
The generic permute network, delivers at each lower half cell’s input two numbers: a partial
prefix that is greater than the actual needed value for that position and one of the original input
numbers. These numbers are then subtracted in order to obtain the final values. The configuration

10 Mihai Antonescu, Gheorghe M. Ştefan3. Log-DEPTH PIPELINED VERSION

Fig. 5. Pack configuration.

seen in Fig. 6 emerges, containing 3 types of cells (in addition to dummy cells that propagate the
input as is), labeled as follows:

• [1 1+2] : {y1,y2}<= {x1,x1 + x2}

• [2 1+2] : {y1,y2}<= {x2,x1 + x2}

• [2−1 2] : {y1,y2}<= {x2 − x1,x2}

Similarly, other 2 input variable, associative functions that support the inverse operation
can be implemented using this network shape, although circuits may not be the most efficient
implementation for all possible functions.

3.4. Reduction on the permute shape
The result of the reduction function can be taken over from the right most output of the (log2 n)-th
stage of the net.

Cell’s functions for the reduction operation are represented in Fig. 7. The main computing
resources needed for the three currently used reduction functions are an adder/subtracter and

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern 11

Fig. 6. Adapting the permute shape to sum prefix computation.

multiplexers to select the right or left output for the comparison functions min and max, or the
sum for the add function.

Only n−1 cells are involved in computing the reduction functions, all the other cells, marked
with don’t care in Fig. 7, are not involved in this computation.

4. The Multi-Function Cell
The multifunctional elementary cell has, in addition to the connections specified above,
connections that allow the propagation of the executed function’s opcode. Thus, the input and
output of each elementary cell (with position i,j) used to configure an n-input network contains
three fields, as follows:

ini j = {x2i−1,x2i, f uncIn}

outi j = {y2i−1,y2i, f uncOut}

for i = 1, . . . ,n/2 and j = 1, . . . ,(−1+2log2n), where:

x2i = {dataIneven,enableIneven,destIneven}; x2i−1 = {dataInodd ,enableInodd ,destInodd}

12 Mihai Antonescu, Gheorghe M. Ştefan4. THE MULTI-FUNCTION CELL

Fig. 7. Reduction configuration.

y2i = {outeven,enableOuteven,douteven}; y2i−1 = {outodd ,enableOutodd ,doutodd}
where:

• dataIneven, dataInodd , dataOuteven and dataOutodd are scalars

• enableIneven, enableInodd , enableOuteven and enableOutodd are enable bits controlling
whether that input is processed using the selected function

• destIneven, destInodd , destOuteven and destOutodd are the destination pointers “consumed”
bit by bit in each stage of the net, as follows:

destOuteven ⇐ destIneven/2; destOutodd ⇐ destInodd/2

The structure of the cell represented in Fig. 8 is the maximal version. The indexes i and j are
constant synthesis parameters used to identify the position of the cell in the net. At the synthesis
stage each cell can be synthesized according to its position in the net specified by the pair {i, j}
used to specify the line and the column in the net. The DECODE circuit takes into account the
code for the function, funcIn, the enable bits and only the least significant bit of the destination
codes. There is a weak dependency of the cell size on the number of inputs n as some cell inputs
depend logarithmically on n. Cell size also depends linearly on the number of bits used for the n
scalars submitted to the net.

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern 13

Fig. 8. The multi-function cell.

The types of cells, in descending order of complexity, are:

1. (n−1) reduction cells: adder/subtracter, one 2-input multiplexer, one 3-input multiplexer,
logic, pipeline registers

2. (n−1− log2n) subtract cells: subtracter, one 2-input multiplexer, one 3-input multiplexer,
logic, pipeline registers

3. (1−n+0.5nlog2n) pack cells: two 2-input multiplexers, logic, pipeline registers

4. (−2n+0.5nlog2n+ log2n+2) permute cells: two 2-input multiplexers, pipeline registers

5. (0.5n−1) dummy cells: pipeline registers

Based on this position dependant synthesis, Fig. 9 emerges, for an 8-input network.

5. Log-Step Sequential Version
The sequential version is made up of an one-dimensional array, of n/2 fully equipped cells, loop
connected with multiplexers (see Fig. 10 for an 8-input example). The index j is now no longer a
wired constant associated to each cell, but is instead used to specify the current stage for the n/2
fully equipped cells. Based on j, each multiplexer selects the proper input. The resulted circuit
geometry connects multiple multiplexer inputs to the same data wire and as such, further size
optimizations can be done. The func input is kept constant during the (−1+ 2log2n) or log2n
(for reductions) cycles imposed by the computation of the function it specifies.

Execution time remains in O(log n) but with no opportunity to involve this circuit in pipeline
execution. The advantage we obtain is in reducing the size of the circuit to O(n). With this
method, depending on application needs, one can trade physical space for execution time or
vice-versa.

Depending on the weight of the scan functions involved in the algorithms to be run and on
throughput and size constraints, the pipelined or the sequential solution will be adopted.

14 Mihai Antonescu, Gheorghe M. Ştefan6. SIMULATION AND SYNTHESIS RESULTS

Fig. 9. The distribution of cells according to their type.

6. Simulation and Synthesis Results
This network was tested using a basic DUT vs Golden Model approach written in SystemVerilog.
Randomly generated input data was fed to both the DUT and the Golden Model and their outputs
were compared. All tests were passed for different sized networks, proving design functionality.

This network was synthesised targeting a ZYNQ7020 FPGA device, using a data size of 32
bits. Synthesis results are presented in Tables 1, 2 and 3. Table 3 shows the relative increase in
the number of LUTs and REGs between the two networks: a standard Beneš-Waksman and a
Multi-Function circuit.

No. Inputs Number of Cells LUTs REGs Average LUTs/cell Average REGs/cell
8 20 592 1390 30 70

16 56 1867 3693 33 66
32 144 4911 9689 34 67
64 352 12291 24277 35 69
128 832 29715 58805 36 71
256 1920 70051 138885 36 72

Table 1. Network synthesis results: Permute-Only

The Multi-Function circuit scales slightly steeper that the Permute only network because of

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern 15

Fig. 10. The sequential version for 8 inputs.

No. Inputs Number of Cells LUTs REGs Average LUTs/cell Average REGs/cell
8 20 1240 1459 62 73

16 56 3813 3921 68 70
32 144 10208 10368 71 72
64 352 25894 26252 74 75
128 832 63389 64146 76 77
256 1920 151180 152627 79 79

Table 2. Network synthesis results: Multi-Function

No. Inputs % Increase in LUTs % Increase in REGs
8 109.4 4.9

16 104.2 5.8
32 107.8 6.5
64 110.7 7.5

128 113.3 8.3
256 115.8 9.0

Table 3. Network synthesis results: Multi-Function size increase compared to permute-only Beneš-
Waksman netowrk

the additional resources needed by the control circuitry.

16 Mihai Antonescu, Gheorghe M. Ştefan7. EXAMPLES OF APPLICATIONS

7. Examples of Applications

For the next examples, we will consider this following additional resource, distributed along the
cells of the system represented in Fig. 1 : Boolean vector, B = [b1, . . . ,bn], used to specify the
state of each cell. For bi = 1 the cell Ci is considered active, else the cell is inactive. The elements
of the vector B are used to enable the components of the data vector sent to the SCAN circuit.
Data sent by a cell is considered enabled if the cell is active. Another vector involved in the
following examples is IX = [1,2, . . . ,n] used to index cells in the MAP array.

7.1. Select function

The select function returns the i-th element from a vector V : sel(i,V).

/ * **
The s e l e c t scan f u n c t i o n
I n i t i a l :

V = [S1 S2 . . . Sn] / / n−component v e c t o r s u b m i t t e d t o s e l e c t i o n
IX / / d e s i r e d l o c a t i o n i n d e x
i / / t h e i n d e x o f t h e s e a r c h e d e l e m e n t i n V

F i n a l : o u t = S i / / t h e i −t h component o f V
** * /
where (IX = i) / / o n l y t h e c e l l where IX=i rema ins a c t i v e : b i = 1
SCAN(V, B , r e d u c t i o n add) / / t h e scan n e t t a k e s V f o r r e d u c t i o n add
wait (l o g 2 n) / / due t o t h e l a t e n c y o f t h e SCAN n e t t o r ed uc e o u t
o u t = REDUCE / / REDUCE o u t p u t i s S i because o n l y c e l l i i s a c t i v e

7.2. Matrix-vector multiplication

Matrix-vector multiplication is one of the most frequently accelerated computation in linear
algebra applications. In this operation, the reduction net is involved with the function reduction
add used for computing the inner product between each line of the matrix and the vector. While
the first stage of the inner product operation, the scalar multiplication distributed along the MAP
cells (Fig. 1), is obviously executed efficiently (it benefits of an acceleration in O(n)), the second
stage, the addition, is performed in O(log n) time by the reduction net, thus reducing the overall
efficiency. The acceleration obtained waiting for the propagation through the reduction net for
the reduction add function is in O(n/log n).

One solution for avoiding the effect of latency introduced by the reduction network is to use
a queue memory distributed along the MAP array, each cell harboring one level, starting with
the left-most cell [13]. In each cycle the result of multiplying one matrix line with the vector is
submitted to the reduction net, then, after log2n cycles, the first inner product is generated at the
output REDUCE (see Fig. 1) and it can be pushed in the queue. The process of multiplication
continues n cycles. For the last inner product we must wait another log2n cycles to do the last
push in order to complete the result in the queue. The resulting execution time is 2n+ log2n+
const and the acceleration is in O(n). Simulations provided 6n× acceleration.

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern7.3. The pooling stage of convolutional stage of a CDNN17

7.3. The pooling stage of convolutional stage of a CDNN

The pooling process receives as input a m×n matrix and provides as output a m/p×n/p matrix
substituting each p× p sub-matrix with a value (sum of elements or maximal value). From a
column point of view, this can easily be done at the map-array cell level. Compacting lines
is done using the pack function. Prefix add is used to compute the position of each element
maintained in the final vectors. The following algorithm describes the process for each line:

/ * **
Pack a v e c t o r a c c o r d i n g t o a boo lean v e c t o r
I n i t i a l :

V = [S1 S2 . . . Sn] / / v e c t o r t o pack
B = [B1 B2 . . . Bn] / / Bi=1 s e l e c t s S i t o be l e f t a l i g n e d

F i n a l :
S = [x1 x2 . . . xq y1 y2 . . . y r] w i t h q + r = n
x i , f o r i = 1 , . . . , q , are t h e s e l e c t e d v a l u e s

** * /
SCAN(B , B , p r e f i x add) / / compute t h e p o s i t i o n s o f t h e a c t i v e c e l s
wait (−1+2 l o g 2 n) / / p r o v i d e s a d e l a y due t o ne t ’ s l a t e n c y
DEST <= SCANout / / t h e d e s t i n a t i o n s f o r S i are lo ad ed
DEST <= DEST − 1
SCAN(V, B , DEST , scan pack) / / send V f o r pack t o DEST
wait (−2+2 l o g 2 n) / / p r o v i d e s a d e l a y due t o ne t ’ s l a t e n c y
a c t i v a t e / / a c t i v a t e a l l c e l l s
S <= SCANout

For example:

V = [3 6 1 8 3 5 6 3 2 6 7 4 9 3 5 2]
B = [0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0]
DEST = [x x x 0 x 1 2 3 x x x x 4 x 5 x]
S = [8 5 6 3 9 5 x x x x x x x x x x]

In the experimental environment, for n cells, the execution time is:

tpack(m) = 2×2log2n+ const ∈ O(log2n)

Acceleration belongs to O(log n). In the case of pooling multiple vectors, stored vertically (one
after another) in each cell, with a proper algorithmical approach, the logarithm can be absorbed
resulting in execution time proportional to the number of vectors treated. Acceleration now
becomes O(n).

7.4. Matrix transpose

Considering the matrix V of components v(i,j), whose scalar components must be transposed into
the matrix W of scalar components w(i,j), for i, j = 0,1, . . . ,n− 1. We consider the following
transpose algorithm:

18 Mihai Antonescu, Gheorghe M. Ştefan7. EXAMPLES OF APPLICATIONS

/ * **
A l g o r i t h m f o r m a t r i x t r a n s p o s e .

I n i t i a l : v (i , j) , f o r i , j = 0 , 1 , . . . n−1
F i n a l : w(i , j) , f o r i , j = 0 , 1 , . . . n−1

v e c t o r : A = [a [0] a [1] . . . a [n −1]]
Add and sub o p e r a t i o n s are modulo n

** * /
f o r (k =0; k<m; k=k +1) begin

(1) A <= [v (0 −k , 0) v [1 −k , 1] . . . v [n−1−k , n −1]
(2) A <= [a (0 − k) a (1 − k) . . . a (n−1−k)]
(3) f o r (j =0 ; j<n ; j = j +1) w(j +k , j) <= a (j)

end

The steps (1) and (3) in the main loop of the previous algorithm are performed in
the MAP section of the system (see Fig. 1). For the second step, the permutation
function of our SCAN circuit is used. The previous algorithm is developed for a n × n
matrix with n being the number of map-array cells, but can be relatively easily adapted
to computing multiple smaller square matrices at a time. For better understanding of
this algorithm, let us consider the small example of the transpose of a 4 × 4 matrix:

Initial
step 1: step 2: step 3: step 4:

V: 0 1 2 3
4 5 6 7 (1) 0 5 A F C 1 6 B 8 D 2 7 4 9 E 3
8 9 A B
C D E F (2) 0 5 A F 1 6 B C 2 7 8 D 3 4 9 E

W: x x x x (3) 0 x x x 0 x x C 0 x 8 C 0 4 8 C
x x x x x 5 x x 1 5 x x 1 5 x D 1 5 9 D
x x x x x x A x x 6 A x 2 6 A x 2 6 A E
x x x x x x x F x x B F x 7 B F 3 7 B F

The execution time on a system with n cells in the MAP section (see Fig. 1) belongs to O(n)
and acceleration belongs to O(n).

7.5. FFT

Depending on the number of samples for which the FFT is calculated, our system can be used in
several ways. For small values, all samples associated with a FFT can be loaded and processed
into one cell. In this case the ”butterfly” interconnections assumed by the algorithm do not affect
the performance. In the case of a larger number of samples, when samples from each FFT will
use memory belonging to several cells, cells will have to communicate with each other affecting
performance. In this case, our permutation network will prove useful.

For the sake of simplicity, let us consider FFTs with the number of samples p2 = n. Thus, a
n-cell MAP will store p values in each of its p vectors. For this situation, there are two solutions:

Multi-Function Scan Circuit for Assisting the Parallel Computational Map Pattern 19

7.5.1. Version 1: uses permute to exchange data between cells

The FFT calculation is done in two stages. In the first stage, the large distance “butterflies”
are solved. Data involved in multiplications and additions performed in this stage are stored in
the columns of the matrix that are stored in the same cell and thus calculation does not involve
communication between cells in MAP. In the second stage small distance “butterflies” are solved.
This time data is distributed in different cells at distances of maximum n/2 cells. Communication
between cells is achieved through the permutation function. For this case, log2n permutations
are defined. Unfortunately, latency cannot be avoided since a “butterfly” cannot be calculated
until the previous one has finished being processed.

7.5.2. Version 2: uses permute to perform the transpose of the matrix

The second version involves three stages. The first stage is identical to the previous version. In
the second stage, the p× p-component matrices are transposed, so that data involved in the small
”butterflies” will be in the same cells, without the need for further inter-cellular communication.
After the transpose is complete, data is properly arranged such that the third stage will be similar
to the first. In this case, an acceleration of ∼ 1.5×n is achieved.

8. Concluding Remarks
In the context of frequently used patterns for many-core parallel computation, we have developed
a multi-function programmable network that offers circuit support for multiple parallel patterns.

The novelty of our approach consists of adding additional functions to the consecrated shape
of the Beneš-Waksman permutation network:

• the implementation of the prefix scan function for addition

• the implementation of a dynamically configured permutation for the pack function

• the implementation of reduction type functions for addition, min, max

These functions are used to enhance the computing capabilities of a MAP type array, as seen in
Fig. 1. These new resources can be used in a wide range of algorithms as seen in Section 7.

The multi-function permutation circuit has the main advantage of efficiently implementing
some of the most frequently used scan-type and reduction type functions on the same circuit. In
this circuit, the resulting cells are more complex than the simplest permute-only cell for (2n−
2− log2 n) cells out of the total n(−1+ 2log2 n)/2 number of cells. Roughly 20% of the cells
are fully equipped. The resulting multi-function network is roughly double the size of Beneš-
Waksman permutation-only network . If size constraints are of vital importance and time is not,
a sequential version of the network can also be chosen and deployed.

References
[1] M. McCOOL, A. D. ROBINSON and J. REINDERS, Structured Parallel Programming. Patterns for

Efficient Computation, Morgan Kaufman, 2012.

[2] V. E. BENEŠ, Optimal Rearrangeable Multistage Connecting Networks, Bell System Technical
Journal, Vol 43, No 4, pp 1646-1656, 1964.

20 Mihai Antonescu, Gheorghe M. Ştefan8. CONCLUDING REMARKS

[3] V. E. BENEŠ, MathemaTIcal Theory of connecting networks and Telephone Traffic, Academic Press
New York, 1965.

[4] A. WAKSMAN, A Permutation Network, Journal of the ACM, v. 15. no. 1, pp. 159-163, 1968.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0” June
2021. Accessed June 15, 2023 [online]. Available: https://www.mpi-forum.org/docs/
mpi-4.0/mpi40-report.pdf,

[6] S. SENGUPTA, M, HARRIS, Y, ZHANG and J. D. OWENS, Scan Primitives for GPU Computing,
Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
San Diego, California, pp. 97–106, 2007.

[7] D. NASSIMI and S. SAHNI, A Self-Routing Benes Network and Parallel Permutation Algorithms,
IEEE Transactions on Computers, C-30(5), pp. 332-340, 1981.

[8] M, BADER, H.J. BUNGARTZ, D. MUDIGERE, S. NARASIMHAN and B. NARAYANAN, Fast
GPGPU Data Rearrangement Kernels using CUDA, arXiv:1011.3583 [cs.DC], 2010.

[9] M. HARRIS, Optimizing Parallel Reduction in CUDA, [Online]. Available: https://
developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

[10] V. DRAGOMIR and G. M. STEFAN, All-Pair Shortest Path on a Hybrid Map-Reduce Based
Architecture, Proceeding of the Romanian Academy, Series A 20(4), pp. 411-417, 2019.

[11] W. J. DALLY and B. TOWLES, Principles and practices of interconnection networks, Elsevier,
Morgan Kaufmann Publishers, 2004.

[12] R. E. LADNER and M. J. FISCHER, Parallel prefix computation, Journal of the ACM, Volume 27(4),
pp 831–838, Oct. 1980.

[13] M MALITA, G.V. POPESCU and G. M. STEFAN, Pseudo-Reconfigurable Heterogeneous Solution
for Accelerating Spectral Clustering, Proceedings of 2020 IEEE International Conference on Big
Data, Atlanta, GA, USA, pp. 5138–5145, 2020.

