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Abstract. Efficient navigation in dynamic environments is a critical skill for of mobile
robots, where obstacles can stochastically appear. This paper presents a complete navigation
and control system that integrates effective path optimization and motion control capabilities
for mobile robots evolving in indoor static and dynamic environments. This system consists
primarily of two layers. In the Optimization Layer (Global planner), a Deterministic Con-
structive Algorithm (DCA) quickly generates the shortest path, as a sequence of nodes, to get
to the goal position while avoiding the static obstacles. The Control layer (Local planner)
employs an Efficient Fuzzy Logic Controller (EFLC) to continuously guide the robot around
the detected dynamic obstacles and drive safely the robot along the intended path. Simula-
tions conducted on various maps with different complexities demonstrate the effectiveness of
the DCA planner. Finally, validations using V-REP software show the strength of the proposed
EFLC that mimics human reasoning for mobile robots navigating in dynamic environments.

Key-words: Deterministic constructive algorithm; indoor static and dynamic environ-
ments; fuzzy logic control; mobile robots; shortest path planning.

1. Introduction

The ability to autonomously navigate while avoiding static and dynamic obstacles in indoor
workspaces (W-spaces) is an important challenge for mobile robots to safely achieve their tasks.
Additionally, path optimization is one of the key research issues; further, it is easier in static than
dynamic environments. Dealing with such an open problem, several studies have been achieved
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resulting in a considerable number of approaches that differ according to their performance cri-
teria and type of navigation W-spaces (static or dynamic). Generally, this problem can be tackled
by two types of methods: (i) Deterministic approaches and (ii) Non-deterministic approaches.

The first category, Deterministic approaches, encompasses graph-based algorithms such as
Rapidly-exploring Random Tree (RRT), Probabilistic RoadMap (PRM) and A*. Zuo et al. [1]
develop a hierarchical path planning approach using A* to quickly find a geometric path. Several
way-points are chosen as sub-goals for the next phase. A least-square policy iteration is then
employed as an optimization mechanism to identify the optimal sub-objective positions within a
predefined radius. Although results were significantly better than those returned with the RRT, it
is subject to the constraint that the optimization is only performed on a set of pre-selected points
within a limited radius [2]. An enhanced RRT that incorporates BackTracking (BT) and A*
is proposed in [3]. Each iteration, RRT-A*-BT selects the optimal path connecting the current
position to Target. Consequently, the shortest path is determined with a trade-off of a lower
convergence rate. Authors in [4] propose the PRM* and RRT* using best-neighbor search pro-
cedure and tree rewiring. Both techniques generate shorter paths under low convergence and
high computation time. Deterministic approaches are generally efficient and cost-effective in
small environments. However, their susceptibility to getting stuck in local minima makes them
less suitable for complex W-spaces [5]. Moreover, even after exploring the environment and
constructing a graph, additional processing is needed to compute a path based on the graph [6].
Owing to their inherent NP-hardness, deterministic approaches often struggle to provide satis-
factory solutions.

Employing Non-deterministic approaches such as metaheuristics becomes essential for es-
caping local minima and achieving satisfactory results. They can be classified in two main
classes: (i) Algorithms using a neighborhood search that start from an initial solution and ap-
ply an improvement procedure by examining neighboring solutions and (ii) Algorithms using a
global search that generate new solutions randomly to progressively enhance the current solu-
tions set. Researchers develop numerous metaheuristic algorithms based on Genetic Algorithms
(GA) [7–10], Artificial Bee Colony (ABC) [11,12], Particle Swarm Optimization (PSO) [13–15],
Cuckoo Search (CS) [16], Gravitational Search Algorithm (GSA) [17,18], Ant Colony Optimiza-
tion (ACO) [19, 20, 26], Grey Wolf Optimization (GWO) [21, 22] and Slime Mould Algorithm
(SMA) [23]. These methods are significant as they establish reference inputs for tracking prob-
lems specific to mobile robots [24, 25].

Within the Global search-based category, GA and PSO are widely used. Authors in [10]
propose a GA-based technique that employs an encoding scheme to increase the chromosomes
flexibility and a new crossover operator for more effectiveness. Li and Chou [14] develop a
self-adaptive learning PSO with various strategies for multi-objective optimization, and develop
a new self-adaptive learning mechanism to improve its search capacity. Bakdi et al. [9] exploit
depth information from a vision system to model the robot W-space. GA technique is then used
to construct an optimal collision-free path. Authors in [20] propose an ACO algorithm to bal-
ance fast convergence with efficient exploration. This approach uses a non-uniform pheromone
distribution to minimize the search space area explored by ACO and improve the time efficiency.
Despite their effectiveness, these methods are still limited regarding premature convergence.

To overcome some of these issues, many studies combine deterministic and non-deterministic
algorithms, thus capitalizing on their respective advantages. For instance, authors in [28] com-
bine ACO and Dijkstra algorithms. In this method, ACO refines the initial near-optimal path
produced by Dijkstra to construct the final optimal path. Kala et al. [29] develop another ap-
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proach that hybridizes A* with Fuzzy Logic (FL). Dai and colleagues [19] propose a recent
ACO-A* hybrid algorithm, where A* is employed to enhance the convergence speed of ACO.

Other types of approaches such as Machine Learning (ML) and Reinforcement Learning
(RL) are proposed for path planning [27]. Authors in [30] develop an Efficient Q-Learning (QL)
algorithm to generate optimized courses. Low et al. [31] present an improved QL approach and
use a Flower Pollination Algorithm (FPA) to initialize the Q-table. Chang et al. [32] suggest
an improved Dynamic Window Approach (DWA) based on QL. DWA is employed for local
path planning, while QL is specifically used to adaptively tune its parameters. Even the combi-
nation improves performance, it requires high runtime because of the training efforts for large
instances [30]. Despite receiving considerable attention, these algorithms are often inefficient be-
cause they get trapped in local minima [31]. Another weakness includes the heavy computation
requirements to generate near-optimal paths, high operational complexity and implementation
difficulties with dynamic obstacles (real-time parameters setting). Thereby, research in this area
is still emerging, as there is no unified algorithm integrating all features and providing best so-
lutions in static and dynamic W-spaces. For many applications, the environment changes in
such a manner it is impossible to be foreseen by the designer. Finally, information is generally
inaccurate and may be incomplete, which may leads to restricted sensor activity.

Addressing several complex issues, particularly avoiding dynamic obstacles, requires an in-
telligent process such as Artificial Intelligence (AI). For instance, Neural Networks (NN) and
FL approaches achieve great success and are suggested as alternatives to conventional methods.
Kamil et al. [33] propose an online sensor-based motion planning algorithm using a multi-layer
decision FL Controller (FLC) to improve safety and cost. This FLC employs the prediction and
priority rules of multi-layer approach for an efficient method. Yuan et al. [34] present a Gated
Recurrent Unit-Recurrent NN (GRU-RNN) model for dynamic planning. Inputs and tags are
derived from sample sets generated by an improved Artificial Potential Field (APF) and ACO
algorithms. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to construct and
optimize the FLC using a set of input/output variables. Juang and Chang [35] develop an FLC
based on the evolutionary-group-based PSO. Roman et al. [36] apply the Iterative Feedback Ad-
justment (IFT) algorithm to solve optimization problems and improve the training speed of NN.
Algharbi et al. [37] present an FLC for navigation in unstructured environments, hybridized with
other Soft Computing (SC) techniques such as GA, NN, and PSO. SC techniques are used as
alternatives to Evolutionary Algorithms (EA) in dynamic environments. Such approaches are
ineffective because of getting stuck in local minima and limit cycles. In addition, the final paths
accuracy highly depends on the training state (for NN) or conceived rules (for FL) [38]. Finally,
such approaches have other implementation issues related to the dynamic nature of the W-spaces,
primarily due to the difficulty in real-time parameter adjustment [30].

In summary, the previous categories of path optimization and control approaches face various
challenges and often suffer from high design complexity, heavy computation, and implementa-
tion challenges, particularly in dynamic W-spaces. Deterministic methods are prone to getting
stuck in local minima, while non-deterministic approaches often struggle with premature con-
vergence. AI-based techniques depend highly on the training states and conceived rules, and
encounter difficulties in real-time parameter adjustment.

The main contributions of this paper lie in the development of a complete navigation and
control system for mobile robots operating in indoor static and dynamic environments. This is
significant because the current literature typically focuses on one aspect, rather than addressing
both, simultaneously. The system seamlessly combines two essential capabilities: (i) Path plan-
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ning and optimization, achieved through a Deterministic Constructive Algorithm (DCA) serving
as a global planner, and (ii) Motion control, facilitated by an Efficient Fuzzy Logic Controller
(EFLC) acting as a local planner. DCA effectively generates the best path for the robot to get to
the goal position, addressing the path optimization aspects. Meanwhile, EFLC deals with any
change in the environment during the robot movement to drive it safely along the intended path,
thus addressing the motion control aspect. This combination of capabilities ensures enhanced
performance and adaptability for mobile robots in various real-life applications.

The outline of the paper is as follows. Section 2 describes the mathematical model of the
problem. Section 3 presents the proposed Deterministic Constructive Navigation and Path Opti-
mization Algorithm while describing the Efficient Fuzzy Logic Controller for dynamic obstacles
avoidance. Section 4 presents and discusses the main obtained results. Finally, Section 5 con-
cludes the paper and presents future work.

2. Formulation of the Problem
The obstacles in an indoor W-space can be effectively approximated using rectangles serving
as a suitable representation [30]. A mobile robot is supposed to move from the initial position
Source(xS , yS) to the final position Target(xT , yT ). The goal is being to find the shortest path
linking Source and Target, which consists of a set of n nodes and (n − 1) segments. Each
segment Path Segi(Ni, Ni+1) is given by two successive nodes Ni and Ni+1, i = 1 . . . n. The
robot evolves in a W-space cluttered with m static obstacles; each is approached by a rectangle
of four points P1(x1, y1) . . . P4(x4, y4) defining four segments: Obs Segtj , t ∈ {1 . . . 4}, j ∈
{1 . . .m}. The robot is approximated by a rectangle defined by four points; their coordinates
vary depending on the robot location. The mathematical equation for each segment, forming a
given rectangle wrapping an obstacle, is determined by

Seg(Pk, Pl) =

{
y − yk = yl−yk

xl−xk
(x− xk)

MIN(xl, xk) ≤ x ≤ MAX(xl, xk)
(1)

Considering the W-space approximation, the path problem consists of finding a set of feasible
nodes that optimizes the total length while satisfying condition

Path Segi(Pi, Pi+1) ∩Obs Segtj = ϕ, i = 1 . . . n, t = 1 . . . 4, j = 1 . . .m (2)

Ar,tj =

 1 if∃P1(x1, y1), P2(x2, y2)|({P1, P2} ∈ Rob Segr)
∧({P1, P2} ∈ Obs Segtj),∀t, r ∈ {1 . . . 4},∀j ∈ {1 . . .m}

0 otherwise
(3)

Bi,tj =

 1 if∃P1(x1, y1), P2(x2, y2)|({P1, P2} ∈ Path Segi) ∧ ({P1, P2}
∈ Obs Segtj),∀i ∈ {1 . . . n},∀t ∈ {1 . . . 4},∀j ∈ {1 . . .m}

0 otherwise
(4)

The following optimization problem, whose variables will be specified as follows, minimizes
the total length of the path:

min(

i=n−1∑
i=1

∥Ni+1 −Ni∥) (5)
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Table 1. Notations, parameters, and indices [40]
n Number of nodes.
m Number of obstacles.
i Index of segment formed by ith and (i+ 1)th nodes; i ∈ {1 . . . n}.
j Index of obstacle j; j ∈ {1 . . .m}.
k Indices of points Pl, l ∈ {1 . . . 4} that define an obstacle k.
r Index of segment r which defines the robot rectangle; r ∈ {1 . . . 4}.
t Index of segment t defining the rectangle enveloping an obstacle; t ∈

{1 . . . 4}.
Ni(xi, yi) ith node of the path.
Obsj jth obstacle; j ∈ {1 . . .m}.
Path Segi(Ni, Ni+1) ith segment specified by nodes (Ni, Ni+1); i ∈ {1 . . . n− 1}.
Obs Segtj(Pk, Pl) tth segment of jth obstacle determined by the points (Pk, Pl);

t, k, l ∈ {1 . . . 4}, j ∈ {1 . . .m}.
CPos The current location of the mobile robot.
Rob Segr(Pk, Pl) rth segment of the rectangle approximating the robot; {Pk, Pl} is

calculated according to CPos; r, k, l ∈ {1 . . . 4}.

The Euclidean distance between nodes Ni and Ni+1 is given by

∥Ni+1 −Ni∥=
√
(xi+1 − xi)

2
+ (yi+1 − yi)

2
,∀i ∈ {1 . . . n− 1} (6)

The optimization problem is subjected to the following constraints:

(xi+1 ̸= xi) ∨ (yi+1 ̸= yi),∀i ∈ {1 . . . n− 1} (7)

i=n−1∑
i=1

j=m∑
j=1

Bi,tj = 0, ∀i ∈ {1 . . . n− 1},∀t ∈ {1 . . . 4},∀j ∈ {1 . . .m} (8)

j=m∑
j=1

Ar,tj = 0,∀r, t ∈ {1 . . . 4},∀j ∈ {1 . . .m} (9)

Ar,tj ∈ {0, 1}, Bi,tj ∈ {0, 1},∀i ∈ {1 . . . n},∀j ∈ {1 . . .m} (10)

The constraints (7) impose all the generated nodes to be different. The constraints (8) guar-
antee that the path segments will avoid colliding with obstacles. The constraints (9) ensure that
the robot does not encounter obstacles when following the nodes. Finally, the constraints (10)
indicate that the variables A and B are binary.

3. Description of the Proposed Approach

The purpose of the navigation and control system is to guide the robot from Source to Target
on a map. The diagram given in Fig. 1 describes the process in the navigation and control system:
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• Optimization and path planning (Global offline planner): The navigation process starts
with the path planner, determining the best path for the robot to get from its CPos to
Target. To this end, a Deterministic Constructive Algorithm (DCA) rapidly generates the
shortest collision-free path while avoiding static obstacles.

• Motion control (Local online planner): While the robot is following the planned path,
the control layer continuously guides the robot around the dynamic obstacles that have
not been previously included on the map. For this purpose, an Efficient Fuzzy Logic Con-
troller (EFLC) deals with any change in the environment during the robot movement while
calculating the right and left speeds required to drive safely the robot.

Fig. 1. Overall diagram of the proposed DCA-EFLC approach

3.1. Collision-free path optimization
The optimization layer is built upon a constructive algorithm [40] to generate the shortest

path in two stages: (i) Optimization step builds the path as an ordered set of nodes; (ii) Reduction
of nodes number step which is a refinement where vain nodes are removed to streamline the path.

The DCA incorporates two concepts derived from [40]: (i) MovePoint situated at the obsta-
cle corner to enable the robot to maneuver safely around it; and (ii) SafetyDist used as a safety
distance to define the coordinates MovePointi(xi, yi), i = 1 . . . 4. This ensures that the robot
does not collide with the obstacle while navigating around it.
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3.1.1. Optimization algorithm

In Euclidean geometry, the shortest path between two points is the line segment connecting
them. When applied to free W-spaces, the straight line is the shortest path linking Source to
Target. However, in cluttered W-spaces, the obstacles prevent both positions to be connected
by a straight line. The shortest path is then built by circumventing obstacles via defined points
(nodes) nearly orthogonal to the straight-line segment. Fig. 2a illustrates the overall diagram of
DCA approach [40]. The determination of each node involves three consecutive steps:

(a) Overall diagram of the DCA (b) Diagram of nodes reduction

Fig. 2. Generation, optimization and reduction of nodes numbers of the path

a) Step one: The line segment [CPos, Target] defined by CPos and Target is calculated.
Then, the obstacles set Obs{} crossed by this segment is determined by

Obs{} = [CPos,MovePoint] ∩Obs Segtj ,∀t ∈ {1 . . . 4},∀j ∈ {1 . . .m} (11)

b) Step two: Once the set Obs{} is determined, the closest obstacle to the robot Obsk, k ∈
{0 . . . lenght(Obs{})} is selected, and MovePointi, i ∈ {1 . . . 4} of this obstacle are calcu-
lated. After that, intersection points {P1, P2} = [CPos, Target]∩Obs Segtk, t ∈ {1 . . . 4} are
found. Depending on the locations of {P1, P2} on the segments of Obsk, the best MovePoint
is selected to avoid Obsk. Table 2 shows the different cases and the corresponding actions.
c) Step three: In this last step, two cases exist:

• [CPos,MovePoint]∩Obsj = ∅,∀j ∈ {1 . . .m}: The path and CPos are updated with
the determined MovePointi(Path[i] = MovePointi, CPos = MovePointi); then,
the process is repeated from the first step.
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Table 2. Intersection cases and related actions
1. {P1, P2} ∈ {Seg1, Seg2} Select MovePoint2.
2. {P1, P2} ∈ {Seg2, Seg3} Select MovePoint3.
3. {P1, P2} ∈ {Seg3, Seg4} Select MovePoint4.
4. {P1, P2} ∈ {Seg1, Seg4} Select MovePoint1.
5. {P1, P2} ∈ {Seg1, Seg2} Select MovePoint2.
6. {P1, P2} ∈ {Seg1, Seg3} Select the point according to {P1, P2} (Figure 3a of [40])
7. {P1, P2} ∈ {Seg2, Seg4} Select the point according to {P1, P2} (Figure 3b of [40]).

• [CPos,MovePoint] ∩ Obs Segtj ̸= ∅: A collision occurs with obstacle Obsj , the pro-
cess restarts from the first step to generate nodes from CPos until reaching MovePoint,
while avoiding Obsj (MovePoint is considered as a new sub-destination). These steps
are repeated until no obstacle exists between CPos and Target.

Fig. 2a of [46] presents an illustrative example to clarify the DCA returning the shortest path
in a complex W-space.

3.1.2. Reduction of nodes in the generated path

The algorithm given in Fig. 2b minimizes the number of nodes in the constructed paths. It
relies on verifying the collision with obstacles for a specific segment [Nh, Nl] composed of nodes
{Nh, Nl}. If ([Nh, Nl] ∩ Obsj = ∅) ∧ (l ≥ h + 2),∀l, h ∈ {1 . . . n}, j ∈ {1 . . .m}, the path
may be further shortened by eliminating Nk where {h < k < l} (Figures 2b and 2c of [46]).

3.2. Dynamic obstacles avoidance and traps escape
Because of the dynamic nature of the evolving W-spaces (e.g., industrial environments, houses,

etc.), it is crucial to consider the pop-up obstacles as the robot moves through the nodes generated
during the optimization phase.

This subsection presents a navigation strategy designed to avoid dynamic obstacles and es-
cape traps. Our focus is particularly on FL due to its ability to make decisions and emulate human
reasoning, despite the lack of precise information and accurate model equations in complex en-
vironments [41]. The objective is to design an FLC to safely guide the robot through multiple
sub-goals (each node generated in the offline phase is considered as a sub-goal that the robot
needs to reach) without colliding with dynamic obstacles or becoming trapped. Fig. 3 gives the
diagram of the developed EFLC that ensures three behaviors (i) Obstacle Avoidance, (ii) Target
Reaching, and (iii) Trap Escaping. It has seven input variables:

• Distance to Target:

Dist− Target =
√
(Xr −XT )2 + (Yr − YT )2 (12)

• Angle between the robot heading and the vector connecting the robot center to Target:

Error −Angle = arctan (
YT − Yr

XT −Xr
)− arctan(

Yr

Xr
) (13)
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• Distance to closest obstacles in Front area (ObsF ), Right area (ObsR) and Left area
(ObsL) of the robot: sensors of right and left areas set a tilt angle of 30◦ to the left or
right for better obstacles detection without the influence of other areas (Fig. 3).

• Distance to closest obstacles on Left (Left − Obs) and Right (Right − Obs) side of the
robot: the approach distinguishes between left/right sides and left/right areas (Fig. 3).

The outputs of the EFLC approach are Right and Left velocities (VR, VL) calculated depending
on the degree of the robot closeness to obstacles and Target.

Fig. 3. Block diagram of the proposed EFLC

3.2.1. Membership functions and linguistic terms

Triangular and Gaussian functions are chosen to represent the FL sets of the EFLC. The tun-
ing of the membership functions is realized according to the procedure detailed in [46]. Figs. 4a
and 4b of [46] show the membership functions for the input and the output variables, respectively.

3.2.2. Human-reasoning-based navigation strategy

The proposed safe navigation strategy is based on the analysis of human reasoning in dy-
namic environments to avoid obstacles while pursuing multiple goals. Three navigation behav-
iors (Target Reaching, Obstacle Avoidance and Trap Escaping) that mimic human reasoning
have been implemented. Table I of [46] describes the human-reasoning-based transformed into
efficient FL rules. For more details, please refer to [46].

4. Performance Evaluation of DCA-EFLC approach
A series of results assesses the efficiency of the developed DCA-EFLC approach: (i) results

returned by DCA for a complex self-designed environment cluttered with many static obstacles;
(ii) comparisons of DCA with other powerful algorithms such as GA, RRT, ACO, Dijkstra and
QL in terms of path length, runtime and safety; and (iii) a validation is performed using V-REP
software [47] to show the strength of DCA-EFLC. The Mamdani model is utilized as an FL
inference engine; the MIN-MAX method is used throughout the inference process. The defuzzifi-
cation phase employs the Center of Gravity method. Simulations are run on a PC with Intel Core
i3 3.30GHz having 8GB RAM and 64-bit Windows.
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4.1. Results of DCA on a self-designed complex map
A self-designed complex map is considered to evaluate the feasibility and efficacy of DCA;

obstacles placement creates numerous narrow passages in between. Fig. 4 shows the obtained
optimal and collisionless path with Source(25, 775), Target(775, 25), and SafetyDist =
10units. Additionally, runtime = 0.062s, which attests that the proposed approach is able
to return a good solution in a very short time.

Fig. 4. Shortest path in self-designed complex map cluttered with many statics obstacles

4.2. Comparison of DCA with metaheuristic algorithms
Results obtained by the proposed DCA are compared with several well-known powerful plan-

ners in terms of path length, safety and runtime:

• Comparison with memEAPF: It is made with membrane Evolutionary Artificial Potential
Field (memEAPF) algorithm on some maps [42]. Authors propose many different maps;
however, the validation is only made with the most complex maps with many narrow pas-
sages. This gives the robot several choices to get to Target. Table 3 gives the obtained
results. Similarly, Fig. 5 shows the optimized paths generated by the proposed DCA.

Table 3. Comparison of DCA with memEAPF [42] on M5, M7, M8 and M12 environments (bold
numbers refer to best solutions, IP (%): Improvement Percentage)

Maps Path length (unit) Runtime (s)
memEAPF DCA IP (%) memEAPF DCA IP (%)

Map5 6.37 6.50 -2.04 3.16 0.010 99.68
Map7 7.72 8.30 -7.51 3.06 0.031 98.98
Map8 8.28 7.10 14.25 3.00 0.031 99.96
Map12 9.24 9.08 1.730 3.19 0.031 99.02

• Comparison with GA and RRT: Three variants of GA proposed in [43], [44] and [45]
evoked in a complex grid map with 11 static obstacles are used. Since the computation
time is not mentioned, comparison is only made in terms of path length (Figs. 6a-6d). Fig.
6e shows comparisons of DCA (red), GA-PCHIP (Piecewise Cubic Hermite Interpolating
Polynomial) approach [9] (black), and RRT-PCHIP approach (green) [39].
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(a) (b) (c) (d)

Fig. 5. Simulation results on the maps tested in [42]

• Comparison with ACO and Dijkstra: Fig. 6f compares the paths obtained by the pro-
posed DCA (black) with those of Dijkstra (blue), improved GA (green) and ACO (red)
provided in [10].

(a) Reprint from [43] (b) Reprint from [44] (c) Reprint from [45] (d) DCA

(e) GA-PCHIP [9] and RRT-PCHIP [39] approaches (f) GA, Dijkstra, and ACO [10] approaches

Fig. 6. Comparison of DCA with many variant of GA, RRT, ACO, and Dijkstra

4.3. Discussions of results obtained by DCA
DCA performs well in all the considered W-spaces no matter the obstacles arrangement. An-

other prominent trend observed in the metric computation time is that DCA makes a good trade-
off between minimizing the path length and convergence speed.

Table 3 compares results (path length, runtime) delivered by DCA with memEAPF. The non-
deterministic nature of memEAPF imposes several independent runs on each map. It is easy to
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see that DCA significantly improves the path length for the two last tests with an IP of 14.25%
and 1.73%, respectively. For both tests, memEAPF produced the best results. Fig. 5 illustrates the
effectiveness of DCA in finding best quality paths in terms of length and safety. DCA remarkably
improved the runtime by 98.26% compared to memEAPF. Therefore, it is deduced that DCA
typically outperforms memEAPF since it requires less runtimes to yield better paths.

Simulation results shown in Figs. 6a-6d are obtained by running the GA approaches 40 times
for each problem [45]. On the contrary, DCA is executed only once. In addition, in terms of path
length, DCA generated the best path while minimizing zigzags present in the other paths.

More satisfactory results can be seen in Fig. 6e in terms of path length and safety. It is evident
that DCA covers shorter distance to reach Target compared to GA-PCHIP or RRT-PCHIP. As
in the previous case, GA-PCHIP [9] and RRT-PCHIP [39] are executed 10 times each; whereas,
DCA is executed only once. The results given in Fig. 6f show the best paths returned by all the
approaches. In terms of path length, Dijkstra obviously gives the worst performance. Although
this algorithm is efficient for global planning, path length and smoothness of the resulting paths
are obviously poor. The red path generated by ACO is optimal; unfortunately, obstacles vertices
are taken as the nodes, which may cause collisions (i.e., less safety). In terms of safety and path
length, DCA and GA provided the best results.

Generally, the safety is obtained in the GA approaches by adding a penalty to the path length
(when getting closer or across an obstacle) or by defining a reward in the fitness function. This
procedure makes it hard to ensure the safety if the robot dimensions change, for example. In
both cases, the sizes of robot or obstacles are not taken into account and the optimization speed
is deteriorated. However, DCA simply checks this safety using SafetyDist while estimating its
value based on the robot dimensions.

The proposed DCA exhibits attractive features, such as ability to find shortest solutions (zero-
failure rates), high stability (zigzags reduction), low running cost (DCA is significantly faster),
and collisionless paths (high safety).

4.4. Validation and simulation of DCA-EFLC using V-REP software
The strength of the proposed DCA-EFLC approach is shown via a differentially-driven mobile

robot (Pioneer P3-DX) evolving inside a dynamic environment (obstacles are added after the
optimization phase) on the V-REP software. The generated path consists of two nodes at position
Node1(−1.8, 1.2) and Target(−0.15, 3.5). Further, Source(−1.5, 0.07) is placed inside a U-
shape blocking region (Fig. 7a). The robot must escape from this trap situation, arrive at Node1
and then reach Target while avoiding the dynamic obstacles.

Fig. 7 attests the strong performance and success of EFLC in guiding the robot as it
moves along the route nodes. In fact, the robot can reach the route nodes generated by DCA
(Node1 . . . Target) and avoid the dynamic obstacles. When it finds a U-shape blocking zone, it
rotates on itself and chooses the direction toward Target (to the left) to escape. Following that,
the robot determines whether or not an obstacle is ahead. The EFLC approach can decide on
the forthcoming step by evaluating the collision risk for the next position. As a result, the EFLC
directs the robot to avoid the obstacle (Fig. 7c). The robot moves on to the subsequent sub-goal
after completing the first (Node1) as shown in Fig. 7d. The robot has two options, as shown
in Fig. 7e, and the EFLC determines whether the right or left tight narrow passage is the best
and easiest to traverse. The EFLC efficiently leads the robot to select the simpler passage, the
near-optimal path, and safely traverse the narrow passage (Figs. 7f and 7g). Finally, the robot
applies the same reasoning to the next node until it reaches Target (Fig. 7h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Sequence showing the V-REP simulator implementing the proposed EFLC

Many conclusions can be drawn from the results of Figs. 4-7. The proposed DCA-EFLC
approach combines both path optimization and motion control, which together ensure stability
during navigation. The system consistently displays a good performance and exhibits superior
performance in terms of path length, runtime, and safety. Indeed, DCA is constructive and only
requires a very low computation time to generate better solutions. Unlike metaheuristic algo-
rithms that strongly rely on the initial solution and their parameters setting, the DCA planner
does not depend on any parameter. Further, DCA is deterministic, and has the ability to adapt
to environment changes while exploiting the developed EFLC human reasoning-based approach
to avoid dynamic obstacles. DCA guarantees the generation of feasible short paths that avoid
static obstacles in the environment, contributing to the stability of the robot trajectory, EFLC
provides a robust motion control mechanism that enables the robot to smoothly navigate through
the environment, avoid dynamic obstacles and escape traps. The EFLC incorporates human-like
reasoning, allowing for adaptability and resilience in complex and changing environments. This
capability ensures that the robot maintains stability even when faced with dynamic obstacles.

5. Conclusions and Future Work

This paper contributed to the literature on mobile robotics by proposing a navigation and
control system that integrates effective path optimization and motion control capabilities. The
navigation process starts with the path planner, where a Deterministic Constructive Algorithm
(DCA) builds the best path to get the robot from its current position to the goal position. Af-
terwards, while the robot is following this planned path, the Efficient Fuzzy Logic Controller
(EFLC) continuously guides the robot around the dynamic obstacles while calculating the right
and left velocities required to drive safely along the intended path. Simulation results on var-
ious navigation maps and comparisons with other planners demonstrated the effectiveness and
superiority of the developed DCA. It was found that this approach returned good solutions and
outperformed other approaches in terms of path length, safety and runtime. The proposed EFLC,
which mimics human reasoning, is evaluated via an experimental validation on V-REP software.
Results attested the strength of the control strategy in dynamic workspaces. Future work will in-
vestigate how to apply and adapt the vision system developed in [9] to model the robot surround-
ings through images processing techniques. Finally, since the efficiency of the EFLC approach
strongly depends on its rules, it is necessary to tune them to find the most suitable behaviors.
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