
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 27, Number 1, 2024, 65–80

Software Platform Based on the hLARM
Formalism for Modeling Complex Systems

Dragos Constantin POPESCU* and Ioan DUMITRACHE

Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Splaiul Independentei

No. 313, 060042 Bucharest, Romania

Email: dragos.popescu@upb.ro∗, ioan.dumitrache@upb.ro
∗ Corresponding author

Abstract. The problem of defining, analyzing and reasoning behaviors, facts and uncer-
tainties in complex systems asks for new modeling formal methods and software tools that
can deal with managing such collections of heterogeneous and dynamical interacting entities.
The purpose of this paper is to present in detail the implementation of a new software mod-
eling platform which is based on the hLARM (Hybrid Logic-Algebraic Relational Modeling)
formalism which aims to alleviate the process of designing and managing such systems. The
development of the platform is thoroughly analyzed from its conceptual background and up
to the algorithms which support all the inference procedures involved.

Key-words: Complexity; modeling; platform; relational modeling; trust factors.

1. Introduction
The era of connectivity in which the machines connect to each other and collaborate with the

human operators, opened the way to a new stage in the engineering of complex systems as hetero-
geneous and hierarchically and heterarchically organized systems [1]. New fields of science such
as Neuroscience, Ecology or Social Networks, call for a new approach to manage the complex-
ity [2]. Cyber-Physical Systems, the Internet of Things and Services, Socio-technical Systems
led to development of new software platforms for design, analysis, verification and validation.
The use of classical mathematical models for the characterization of such complex systems is
limited and ineffective, requiring to consider other categories of heuristic, relational, logical and
algebraic representations. The paper presents a new software modeling platform based on the
hLARM (Hybrid Logic-Algebraic Relational Modeling) formalism which was introduced and
thoroughly formalized in [3]. The formalism is based on relational models [4], logic, proba-
bilities, numerical information and network representations which provides an intuitive, highly



66 D. C. Popescu, I. Dumitrache

flexible and powerful tool to define, analyze and infer behaviors, facts and uncertainties in com-
plex systems.

In the research community, there were developed in recent years several software platforms
for modeling various aspects in complex systems which rely on specific formal support. For
hybrid systems, using the formalism of hybrid programs [5], it was developed KeYmaera X [6].
It is web based and provides means to define hybrid models consisting of differential equations
and logical expressions which can be analyzed against various properties, constraints or theo-
rems using the embedded solver. Modeling in a graphical manner various complex dynamical
systems consisting of a wide range of mechanical, hydraulic, electrical, thermal or chemical
processes [7] can be achieved using Modelica [8] or Simulink [9]. Behind the block diagram
representation there are differential equations and solvers. For implementing and simulating
multi-agent systems NetLogo [10] can be used. The emergent behavior is achieved here by the
interaction of multiple classes of agents, each having multiple instances. The autonomous behav-
ior of each agent class is defined using a dedicated programming language [11]. The Ptolemy II
modeling platform [12] implements the actor-based formalism which focuses on synchronization
and scheduling in complex concurrent systems. Here there are defined multiple semantics which
control how the entities defined in the platform as blocks with links communicate and perform
their internal computation [13]. Based on the SysML standard [14] for designing and defining
systems in general [15], some companies developed software platforms that asses the modeling
process or provide assistive tools for checking constraints, consistency, etc. Modelio [16] is an
example of such a platform.

In this paper, the implementation of LARM is presented in detail. A conceptual description
of the hLARM formalism is presented in Section 2. The architecture of the platform is outlined
in Section 3 and its implementation in Section 4. The algorithms employed in performing the
procedures of the platform are formalized in Section 5. Finally, conclusions are drawn in Section
6.

2. Brief Description of the hLARM Modeling Formalism
The hLARM formalism addresses the problem of describing workflows in complex systems.

Such systems comprise of multiple autonomous entities which are interacting in a network-like
structure and have their own internal structure and behavior. The outcome of the modeling is the
analysis of the global behavior which is emerging from the interaction of the entities. Addition-
ally, it is useful for designing specific external influence which can be exerted to drive the global
behavior towards a desired one.

Each entity involved is abstracted by a model and the entire context of the complex system
by an environment of models with links (as depicted in Fig. 1). Each model has parameters and
attached attributes which can be inputs, internal or outputs. The parameters (denoted as IOs)
define physical quantities, states or components which are involved either in the interaction of
the models, or in the internal behavior. They can be treated logically (in terms of True or False)
based on their attributes which define specific quality or criteria the parameter can hold, or can
be treated numerically. From a formal perspective, the parameters (input, internal and output)
are denoted as ui, wi and yi, and their attached attributes as αj

ui
, αj

wi
, αj

yi
.

The internal behavior of each model is defined using logical rules (predicates) with attached
trust factors (probabilities) embedding any attribute of the model. The set of the rules is denoted
as F and the attached trust factors as Π, having the following formal definitions:



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 67

M1

M2

M3

Fig. 1. An example of a modeling environment with three interacting entities abstracted by
models and links.

F (α) = F (αu, αw, αy) =

F
1(αu, αw, αy)

F 2(αu, αw, αy)
...

 , Π =

p(F
1)

p(F 2)
...

 (1)

Input and output domains can be defined both at the model level and at the environment
level which interact with the input and output parameters and attributes. The input domains are
denoted as Du while the output ones as Dy and contain logical predicates with attached trust
factors (Fu(αu),Πu and Fy(αy),Πy) for logical parameters and probability density functions
(puk

(uk) and pyk
(yk)) for numerical parameters.

Starting from this concept of interacting models with input-output interface, internal behavior
and domains, three inference procedures are defined:

• Analysis: given an input domain for free input parameters of the environment, determine
the corresponding output domain such that all logical predicates are satisfied and all the
trust factors are consistent.

• Synthesis: given a desired output domain for free output parameters of the environment,
determine the corresponding input domain.

• Structural equivalence: given an environment with models, determine one model that has
an equivalent input-output behavior.

More details regarding the hLARM formalism can be found in the original paper [3].

3. Modeling Platform Architecture
At the core of any modeling platform there are two complementary classes of components:

Internal ones which deal with all the functional implementation and the Graphical User Interface
(GUI) which makes available for the user all the resources of the platform. The internal compo-
nents are comprised of various resources which are realizations of the entities from the modeling
formalism and various algorithms with specific purpose performing inference procedures over
the resources. It is therefore very important to highlight that the functional core of a modeling



68 D. C. Popescu, I. Dumitrache

platform is the Concept - Resource - Procedure trio. The GUI has two main objectives, to con-
struct equivalent graphical representations of the resources and to take commands from the user
in order to trigger specific actions to the internals of the platform.

In developing the LARM platform we adopted such an approach and its conceptual architec-
ture is highlighted in Fig. 2. The resources of the platform are formal entities acquired from the
hLARM conceptual framework: models, parameters, attributes, conversion equations, rules with
attached trust factors, links, logical domains, numerical domains.

Resources 

(entities)

Resource 

management
GUI

hLARM conceptual framework

Store, Create, Edit, Delete

Graphical 

representation

Procedure 

engine

Inference (Analysis, Synthesis, 

Structural equivalence)

Internal External

Fig. 2. Conceptual architecture of the LARM modeling platform.

The management involves storing, creating, editing and deleting resources using dedicated
data structures that are presented in the next section. For each resource stored in the modeling en-
vironment, a specific graphical representation is rendered in the GUI. More details are also given
in the next section. The Procedure engine runs the algorithms implemented to perform all the
inference mechanisms required for the analysis, synthesis and structural equivalence procedures
(domain splitting, domain combination, domain conversion, logical inference and probabilistic
inference).

As depicted in Fig. 3 the two main components of the platform are the LARM terminal and
the LARM UI. The former is a standalone application which implements the resource manage-
ment and the procedure engine. It runs inside the Interpreter and facilitates the interaction with
the user through menus in the OS Command Prompt / Terminal. The LARM UI is a web appli-
cation hosted in a local Web Server which provides graphical representations of all the resources
in the platform and assistance for navigation. The graphical elements and the content of the in-
terface are dynamically generated by the LARM terminal which are rendered by a Web Browser.
The interaction between the LARM terminal and the UI is achieved by the user with the help of
an Index mechanism which is presented in the next section.

For the implementation of the platform, the software technologies used are depicted in Fig.
4. The LARM terminal is implemented in Python [17] and uses the followind packages: SymPy
[18] (for symbolic and boolean algebra calculus), NumPy [19] (for matrix management and linear



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 69

LARM 

terminal

Python Interpreter

LARM UI

Web Server

Web BrowserCMD

Windows OS

IndexIndex

Fig. 3. The sotware architecture of the LARM modeling platform.

Python

LARM terminal

SymPy

NumPy

NetworkX

Web Server - livereload

LARM UI

HTML

CSS + JavaScript

Bootstrap

leader-line

layout

Fig. 4. The outline schematic of the software technologies used for developing the LARM plat-
form.

algebra calculus), NetworkX [20] (for the UI layout algorithm).

The LARM UI is hosted using a Python livereload server [21] which is initialized by the
LARM terminal. It triggers the browser to reload every time it detects a change of the web pages,
which makes the UI interactive. For its development HTML, CSS and JavaScript languages were
used, together with Bootstrap [22], leader-line [23] for rendering connections and the layout
algorithm which is presented in the next section.



70 D. C. Popescu, I. Dumitrache

4. Platform Implementation
The LARM platform provides means to address the modeling in a concurrent and incremental

manner. Multiple users can contribute to the development of a modeling environment where each
sub-part can have different levels of details. There may be both incipient ideas tested and mature
behaviors described in the same environment and the inference procedures are able to address
this context. The following four levels of detail are available:

1. Define models and external links between them

2. Define internal attribute links which for this level behave as logical implications

3. Define model behavior using logical predicates with attached trust factors

4. Define numerical parameters with higher modeling precision for real scenarios

4.1. LARM terminal
The resources of the platform are hierarchically distributed such that the modeling environ-

ment can have multiple models, each model can have multiple IOs and each IO can have multiple
attributes. The same distribution is available for connections where links between models can in-
clude multiple links between IOs which can further include multiple links between attributes. In
managing (creating, editing, deleting) the resources and links, considering their tree-like struc-
ture, multiple constraints are established such that the modeling environment is consistent.

The LARM terminal is implemented using 15 classes (depicted in Fig. 5) which are interre-
lated considering the hierarchy of the resources. For easily identifying each resource, an unique
alphabetical index is cryptographically generated. For highly efficient searching, the resources
are stored in dictionary data structures in the format:

{’index’ : object related to the resource} (2)

The terminal is implemented around a state machine with various menus which assists the
user to manage and navigate through the resources, to define links, to file save, import and com-
bine environments and to define logical and numerical domains for analysis, synthesis and struc-
tural equivalence inferences. The main menu of the terminal is depicted in Fig. 6.

The laEnv class abstracts the modeling environment which contains a dictionary with all the
models and three graphs for model, IO and attribute links. The models class has an index, a name,
a dictionary with logical predicates with attached trust factors for defining its internal behavior
(abstracted by the modRule class) and a dictionary of IOs. The ios class has an index, a name,
a type (if it’s input, internal or output) a symbol used within the conversion equations or the
numerical domains and a dictionary of attributes. The atts class has an index, a name, a symbol
used within the logical predicates or the logical domains and a domain that describes the interval
where the conversion equation makes the attribute True. The graph class has a dictionary of links
while the link class contains and index, the indexes of the source and destination resources and
the index of the parent link. During the analysis, synthesis or structural equivalence inference
procedures, the intermediary domains between models are stored as a dictionary in the envCon-
text class. A domain is abstracted with the laDomain class having a list of logical predicates
with attached trust factors and a dictionary of numerical domains. The envInterface class is used
during the domain conversion and propagation procedures and defines how the current model is



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 71

terminal

laEnv

models graph envContext

modRuleios

atts

link

gaussPDF

intervalPDF

maxPDF

ruleDom

laDomain

envInterface

Fig. 5. The tree of classes developed for the LARM platform.

Fig. 6. Screen capture of the welcome screen and main menu of the terminal from the LARM
platform.

connected to preceding and following models, which types of links are used and what IOs and
attributes are involved. A logical predicate is abstracted using the ruleDom class which contains
a symbolic logical expression and the value of the trust factor. Three types of numerical do-
mains (Probability Density Functions) are considered and implemented: a Gaussian distribution
(gaussPDF class), a constant distribution in a range (intervalPDF class) and a union of interval
distributions (maxPDF class).

Te modeling environment can be saved to a .larm format file and later imported in the plat-
form using the pickle python package [citare]. Also, multiple files can be simultaneously im-
ported in the platform which makes the corresponding environments to merge.



72 D. C. Popescu, I. Dumitrache

4.2. LARM UI
Each resource in the platform has a dedicated graphical representation implemented using

HTML, CSS and Bootstrap. The model (Fig. 7-a) is represented as a green rectangle with the
name as a label in the upper left corner and the list of logical predicates with attached trust factors
on the bottom. It encapsulates all the resources (IOs, Attributes, internal connections) it owns.
A tooltip (Fig. 7-h) with additional information regarding the model appears when hovering the
label with the mouse. The IOs are represented as a rectangle with rounded corners having a
name label on the upper side and the Attributes it owns on the bottom (Fig. 7-b-f). The colors
used are considering the type of the IO: inputs are using yellow, internal parameters are using
blue and outputs are using magenta. An input which is treated numerically has an orange border
around its label (Fig. 7-c) and an output one has a purple border (Fig. 7-f). Similar with a
model, when hovering the IO label a tooltip with additional information is shown (Fig. 7-i). An
attribute is represented using a grey elipse (Fig. 7-g) which contains the name and the symbol of
the attribute which is used inside the logical predicates. In Fig. 7-j is depicted the tooltip for an
attribute which belongs to an IO which is treated numerically, thereby, the numerical to logical
conversion domain is shown.

a b c d e f g

h i j

Fig. 7. A map of all the graphical representation of the resources that can be defined in the
LARM platform.

The links are implemented using the leader-line library. There are three types of links:

• Model links - external links between models rendered in green color (Fig. 8-a)

• IO links - external and internal links between IOs rendered in gradient color considering
the color of the starting and ending element (Fig. 8-b)

• Attribute links - external and internal links between attributes rendered in grey color (Fig.
8-c)

Considering that usually the number of links in an environment may be large and visualiz-
ing the connections between resources can be cumbersome, a focus mechanism was developed.



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 73

a b c

d

e

Fig. 8. The graphical representation of the model, parameter and attribute links and their anima-
tions.

Thus, when clicking on a resource (model, IO, attribute) all the links disappear except the in-
bound and outbound ones, which are starting to play a flow animation using a dotted stroke (Fig.
8-d,e).

Fig. 9. Pop-up window shown when the user duple clicks a resource in order to copy its index to
clipboard.

When interacting with the LARM terminal, each operation of selection for editing / deleting
or linking requires to input the unique index of the resources involved. In order to ease this
operation, when double clicking a resource, its index is automatically copied to clipboard (Fig.
9) which can be easily pasted afterwards.

4.3. Layout algorithm
The purpose of the layout algorithm is to position all the graphical elements of the LARM

UI in an optimal manner such that for large modeling environments the user can perceive all the
details. Because the resources of the platform are interconnected, the layout algorithm has the
same goal as graph visualization techniques [24] [25]: to position the models in order to avoid
overlapping and to achieve optimal link routing.

Layout algorithms for visualizing graphs have an important role in emphasizing structural
properties like node and link rankings or clusters. Such information is used for analyzing inter-
actions between entities in large-scale systems. Among the developed methods, the most popular
ones are the orthogonal layout algorithms [26] [27] and the force-directed ones [28].

The leader-line library is not providing any mean to control the routing of the links and be-
cause of this, the objective here is only to position the models in an optimal manner. A first posi-
tioning is achieved by a force-based kamada-kawai algorithm included in the NetworkX package
[citare] which is applied for the graph of model links. The space of coordinates provided by this
algorithm is [−1, 1] and the size of the models is also not taken into account. Thereby, the LARM
UI layout algorithm implemented in JavaScript is performing next a coordinate translation pro-



74 D. C. Popescu, I. Dumitrache

1

2

3

Fig. 10. A graphical representation of the expansion algorithm implemented to translate the
coordinates provided by the kamada-kawai algorithm to pixel values.

cedure to pixel values, which is also considering the size of the models and if they are connected
or not. The un-linked models are positioned in a grid on top of the interface. The coordinates
of the other ones are expanded outwards from the center of mass of the group of linked models
in order to ensure that none of them overlap. The algorithm is started from the model which is
closest to the center of mass (which is kept in place) and follows in a sequence up to the furthest
one. The procedure is depicted in Fig. 10 where the red dot represents the center of mass of the
group of linked models having the initial coordinates (depicted as dotted rectangles) provided by
the kamada-kawai algorithm, while the solid stroke rectangles represents the final position after
the expansion. This approach is managing to preserve in the final layout the relative positions
of the models provided by the initial kamada-kawai algorithm. The mathematical formulation of
the procedure is given in Algorithm 1

5. hLARM Algorithm Implementation
In order to implement the inference procedures of hLARM formalized in Algorithms 1-5

from [3], custom methods were developed in the LARM terminal classes which rely on external
resources and solvers detailed in the following.

The σ operator is implemented using the symbolic SAT solver from the logical module in the
SymPy package, which is based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[29]. In this implementation the logical contradictions in the environment can be detected when
the solution of the SAT algorithm is False and is further propagated from one model to another.
This leaves a clear trace of the point where the problem originated. The conversion operator
γ is implemented using the POSform (Product of Sums) algorithm from the SymPy package,
which is based on the Quine-McCluskey algorithm [30] [31] [32]. In this implementation, the
logical decoupling (non causal behaviors) can be identified when the outcome of the POSform
is True, signifying that all the previous logical constraints have no effect. The filter operator Φ
is implemented using standard set theory over Python dictionaries. The probabilistic inference is
using standard matrix calculus implemented using the NumPy package. The environment level
procedures are developed around a recursive depth-first search transversal algorithm which was
adopted for processing the graph of models.

In the following, the main steps of the algorithms are detailed, while the classes of the re-
sources involved are indicated.



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 75

Algorithm 1 LARM UI layout algorithm
Input:

(wu
k , h

u
k) - the size (width and height) of un-linked models

(xl
k, y

l
k) - the initial coordinates of linked models

(wl
k, h

l
k) - the size (width and height) of linked models

Output:
(xu

k , y
u
k ) - the final coordinates (of the top left corner in pixels) of un-linked models

(xl
k, y

l
k) - the final coordinates (of the top left corner in pixels) of linked models

▷ Position un-linked models
1: (xu

1 , y
u
1 ) = (100, 100)

2: for k = 2, . . . , n do
3: (xu

k , y
u
k ) = (xu

k−1 + wu
k−1 + 100, 100)

4: end for
5: (xc, yc) =

(∑m
k=1 xl

k·w
l
k·h

l
k∑m

k=1 wl
k·h

l
k

,
∑m

k=1 yl
k·w

l
k·h

l
k∑m

k=1 wl
k·h

l
k

)
▷ Compute center of mass coordinates

6: for k = 1, . . . ,m do
7: dk =

√
(xl

k − xc)2 + (ylk − yc)2 ▷ Compute the distances to the center of mass for
each model

8: end for
9: (xl

k, y
l
k, w

l
k, h

l
k) = sort(xl

k, y
l
k, w

l
k, h

l
k; d) ▷ Sort the vectors of coordinates and sizes in

ascending order by the distance
10: for k = 2, . . . ,m do
11: (x, y) = (xl

k +
wl

k

2 , ylk +
hl
k

2 ) ▷ Compute center of mass for current model
▷ Compute target coordinates

12: if x == xc then
13: xT = x
14: end if
15: if y == yc then
16: yT = y
17: end if
18: if x < xc then
19: xT = (mini=1,...,k x

l
i)− wl

k − 200
20: end if
21: if x > xc then
22: xT = (maxi=1,...,k x

l
i + wl

i) + 200
23: end if
24: if y < yc then
25: yT = (mini=1,...,k y

l
i)− hl

k − 100
26: end if
27: if y > yc then
28: yT = (maxi=1,...,k y

l
i + hl

i) + 100
29: end if

▷ Compute new coordinates for current model
30: if xT − xl

k ≥ yT − ylk then
31: (xl

k, y
l
k) = (xT ,

(xT−xl
k)·(y

l
k−yc)

(xl
k−xc)

+ ylk)

32: else
33: (xl

k, y
l
k) = (

(yT−yl
k)·(x

l
k−xc)

(yl
k−yc)

+ xl
k, yT )

34: end if
35: end for



76 D. C. Popescu, I. Dumitrache

5.1. Algorithms for analysis procedures
The environment level analysis procedure (Algorithm 2) and the model analysis procedure

(Algorithm 3) are implemented as methods in the laEnv class.

Algorithm 2 Environment level analysis procedure

1: Determine the input interface of the environment (laEnv method)
2: Prompt the user to create the input domain for free inputs (laDomain method)
3: Clear the context in the environment
4: Add the input domain to the context (envContext method)
5: Split the input domain to models with free inputs (laDomain method)
6: Save all the resulting domains to the context (envContext method)
7: for each model with free inputs do
8: Call the model analysis procedure (laEnv method)
9: end for

10: Determine the output interface of the environment (laEnv method)
11: Gather from the context all output domains of models with free outputs (envContext method)
12: Logically simplify the resulting output domain (laDomain method)
13: Add the resulting domain to the context (envContext method)
14: Print to the terminal the resulting output domain (laDomain method)
15: Save the context to file (envContext method)

Algorithm 3 Model analysis procedure

1: Determine the model input interface and free input links (laEnv method)
2: Check if the model has rules or internal attribute connections
3: Check if all the output domains of models from the input interface are available in the context
4: Combine all input domains (laDomain method)
5: Transfer from left to right the resulting input domain (laDomain method)
6: Convert numerical domains to logical (laDomain method)
7: Add to the input domain the internal logical predicates (laDomain method)
8: Add implications for attribute links without corresponding rules
9: Rename the symbols in rules for loop links (laDomain method)

10: Determine the model output interface and free output links (laEnv method)
11: Solve the rules and split the resulting output domain in multiple domains for each successive

model and free output patameter (laDomain method)
12: Save all the domains in the context (envContext method)
13: for each successive model do
14: Call the model analysis procedure (laEnv method)
15: end for

5.2. Algorithms for synthesis procedures
The environment level synthesis procedure (Algorithm 4) and the model synthesis procedure

(Algorithm 5) are implemented as methods in the laEnv class.



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 77

Algorithm 4 Environment level synthesis procedure

1: Determine the output interface of the environment (laEnv method)
2: Prompt the user to create the output domain for free outputs (laDomain method)
3: Clear the context in the environment
4: Add the output domain to the context (envContext method)
5: Split the output domain to models with free outputs (laDomain method)
6: Save all the resulting domains to the context (envContext method)
7: for each model with free outputs do
8: Call the model synthesis procedure (laEnv method)
9: end for

10: Determine the input interface of the environment (laEnv method)
11: Gather from the context all input domains of models with free inputs (envContext method)
12: Logically simplify the resulting input domain (laDomain method)
13: Add the resulting domain to the context (envContext method)
14: Print to the terminal the resulting input domain (laDomain method)
15: Save the context to file (envContext method)

Algorithm 5 Model synthesis procedure

1: Determine the model output interface and free output links (laEnv method)
2: Check if the model has rules or internal attribute connections
3: Check if all the input domains of models from the output interface are available in the context
4: Combine all output domains (laDomain method)
5: Transfer from right to left the resulting output domain (laDomain method)
6: Convert numerical domains to logical (laDomain method)
7: Add to the output domain the internal logical predicates (laDomain method)
8: Add implications for attribute links without corresponding rules
9: Rename the symbols in rules for loop links (laDomain method)

10: Compute the set of solutions that satisfy F ∧ F y and does not satisfy F ∧ ¬F y

11: Determine the model input interface and free input links (laEnv method)
12: Split the resulting input domain in multiple domains for each preceding model and free input

parameter (laDomain method)
13: Save all the domains in the context (envContext method)
14: for each preceding model do
15: Call the model synthesis procedure (laEnv method)
16: end for



78 D. C. Popescu, I. Dumitrache

5.3. Algorithms for structural equivalence procedures
The environment level structural equivalence procedure (Algorithm 6) is implemented as a

method in the laEnv class. The model structural equivalence procedure is similar to the model
analysis procedure (Algorithm 3).

Algorithm 6 Environment level structural equivalence procedure

1: Determine the input and output interface of the environment (laEnv method)
2: Clear the context in the environment
3: for each model with free inputs do
4: Call the model structural equivalence procedure (laEnv method)
5: end for
6: Gather from the context all output domains of models with free outputs (envContext method)
7: Logically simplify the resulting output domain (laDomain method)
8: Add the resulting domain to the context (envContext method)
9: Create a new environment

10: Create a new model
11: Add to the new model as input and output parameters the free inputs and outputs of the initial

environment
12: Add as internal rules for the new model the resulting logical output domain of the above

inference procedure

5.4. Implementation of the internal probabilistic inference
The probabilistic inference is performed using the following equation (Definition 8 from [3]):

Πy = Π′T · (V ′ · V ′T )−1 · V ′ · V T
y (3)

Computing the elements of the V matrix is performed on Fu(αu), F (α) and Fy(αy) sets of
logical predicates using the σ operator. For this purpose, an auxiliary attribute fi is defined for
each logical predicate and the following rule is built:

FV =
∧
i

ITE(fi, Fi,¬Fi) (4)

where Fi are all the logical predicates from Fu(αu), F (α) and Fy(αy) and ITE is the condi-
tional “If Then Else” function. The FV logical predicate is than solved:

S̄V = σ|FV (5)

and the solution is further filtered after the set of auxiliary attributes fi:

S̄f = ϕfi |S̄V (6)

Each Vi,j element of the V matrix has the truth value (1 or 0) of the fi attribute from the j
solution of the S̄f set of solutions. In order to determine the linearly independent lines from the
V ′ matrix the SymPy is used again.



Software Platform Based on the hLARM Formalism for Modeling Complex Systems 79

6. Conclusions
The paper presents a new software platform for modeling heterogeneous complex systems

based on the hLARM formalism (Hybrid Logic-Algebraic Relational Modeling) presented in de-
tail in [3]. The architecture of the platform and the algorithms developed highlight a high degree
of flexibility and real ease of use. The proposed platform is based on resources, procedures and a
Graphical User Interface having two main objectives, to build equivalent graphic representations
of the resources and to capture the user’s commands.

The platform’s resources are formal entities taken from the hLARM conceptual framework
that give the platform simplicity of configuration and high adaptability for wide classes of het-
erogeneous complex systems.

The essential advantages of the developed platform is the reconfigurability of different en-
tities modeled and parameterized according to the role and place within the structure of the
complex system. The structural-functional integration and the dynamic behavior of the system
are easily captured by using relational models, logic, probabilities, numerical information and
network representations with efficient interfacing.

Acknowledgement. The results presented in this article have been funded by the Ministry
of Investments and European Projects through the Human Capital Sectoral Operational Program
2014-2020, Contract no. 62461/03.06.2022, SMIS code 153735.

References
[1] S. THURNER, P. KLIMEK, and R. HANEL, Introduction to the Theory of Complex Systems. Oxford

University Press, 2018.

[2] S. GU, F. PASQUALETTI, M. CIESLAK, Q.-K. TELESFORD, A.-B. YU, A.-E. KAHN, J.-D.
MEDAGLIA, J.-M. VETTEL, M.-B. MILLER, S.-T. GRAFTON and D.-S. BASSETT, Controlla-
bility of structural brain networks, Nature Communications 6, 2015, p. 8414.

[3] D. C. POPESCU and I. DUMITRACHE, Knowledge representation and reasoning using intercon-
nected uncertain rules for describing workflows in complex systems, Information Fusion 93, 2023,
pp. 412–428.

[4] Z. BUBNICKI, Modern Control Theory, Springer-Verlag, Berlin, Heidelberg, 2005.

[5] A. PLATZER, Logical Foundations of Cyber-Physical Systems, Springer, Cham, 2018.

[6] KeYmaera X: An aXiomatic Tactical Theorem Prover for Hybrid Systems. Accessed: September 5,
2023 [Online]. Available: https://keymaerax.org/index.html.

[7] I. LIND and H. ANDERSSON, Model based systems engineering for aircraft systems - how does
modelica based tools fit?, Proceedings of 18th International Modelica Conference, Dresden, Germany.
Linkoping Electronic Conference Proceedings 63, pp. 856–864, 2011.

[8] The Modelica Association. Accessed: September 5, 2023 [Online]. Available:
https://www.modelica.org/.

[9] Simulink - Simulation and Model-Based Design. Accessed: September 5, 2023 [Online]. Available:
https://www.mathworks.com/products/simulink.html.

[10] NetLogo Home Page. Accessed: September 5, 2023 [Online]. Available:
https://ccl.northwestern.edu/netlogo/.

[11] S. F. RAILSBACK and V. GRIMM, Agent-Based and Individual-Based Modeling: A Practical Intro-
duction, Princeton University Press, 2011.



80 D. C. Popescu, I. Dumitrache

[12] Ptolemy II Home Page. Accessed: September 5, 2023 [Online]. Available:
https://ptolemy.berkeley.edu/ptolemyII/index.htm.

[13] C. PTOLEMAEUS, Ed., System Design, Modeling, and Simulation Using Ptolemy, Ptolemy.org,
2014.

[14] SysML Open Source Project: What is SysML? Who created SysML?. Accessed: September 5, 2023
[Online]. Available: https://sysml.org/index.html.

[15] E. PALACHI, C. COHEN, and S. TAKASHI, Simulation of cyber physical models using SysML and
numerical solvers, Proceedings of 2013 IEEE International Systems Conference, Orlando, FL, USA,
2013, pp. 671–675.

[16] Modelio Open Source - UML and BPMN free modeling tool. Accessed: September 5, 2023 [Online].
Available: https://www.modelio.org/index.htm.

[17] Welcome to Python.org. Accessed: September 5, 2023 [Online]. Available: https://www.python.org/.

[18] SymPy. Accessed: September 5, 2023 [Online]. Available: https://www.sympy.org/en/index.html.

[19] NumPy. Accessed: September 5, 2023 [Online]. Available: https://numpy.org/.

[20] NetworkX - NetworkX documentation. Accessed: September 5, 2023 [Online]. Available:
https://networkx.org/.

[21] LiveReload Web Server. Accessed: September 5, 2023 [Online]. Available:
https://github.com/lepture/python-livereload.

[22] Bootstrap · The most popular HTML, CSS, and JS library in the world. Accessed: September 5, 2023
[Online]. Available: https://getbootstrap.com/.

[23] LeaderLine. Accessed: September 5, 2023 [Online]. Available: https://anseki.github.io/leader-line/.

[24] H. GIBSON, J. FAITH and P. VICKERS, A survey of two-dimensional graph layout techniques for
information visualisation, Information Visualization 12(3–4), 2013, pp. 324–357.

[25] Y. HU, Algorithms for visualizing large networks, Combinatorial Scientific Computing 5(3), 2011,
pp. 180–186.

[26] J. SUN, Automatic Orthogonal Graph Layout, Bachelor’s Thesis, Hamburg University of Technology,
Hamburg, Germany, 2007.

[27] K. FREIVALDS and J. GLAGOĻEVS, Graph compact orthogonal layout algorithm, in Combinatorial
Optimization: Third International Symposium, ISCO 2014, Lisbon, Portugal, Springer, pp. 255–266,
2014.

[28] Y. F. HU, Efficient and high quality force-directed graph drawing, The Mathematica Journal 10,
pp. 37–71, 2005.

[29] M. DAVIS and H. PUTNAM, A computing procedure for quantification theory, Journal of The Acm
7, 1960, pp. 201–215.

[30] W. V. QUINE, The problem of simplifying truth functions, The American Mathematical Monthly
59(8), 1952, pp. 521–531.

[31] W. V. QUINE, A way to simplify truth functions, The American Mathematical Monthly 62(9), pp. 627–
631, 1955.

[32] E. J. McCluskey, Minimization of boolean functions, The Bell System Technical Journal 35(6), 1956,
pp. 417–1444.


