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Abstract. In this article, the initial values of ordinary differential equations (ODEs) are
computationally subjected to random variation in order to assess its effect on the final values,
through a Monte Carlo procedure, with a chemical kinetics problem as the mathematical il-
lustration. As we use and uphold the Web as a computing medium, the results can be verified
on constructed, public web pages. A random variation in the reactants’ composition raises
undesired variation, which we observe, in the product composition. In a preliminary part
of the article: we overview the determination of ODEs’ parameters from data, leading, with
Python, to favor its 'minimize’ function, against 'curve_fit'; and we use some reactions to find
their rate constants, namely, the frequent A — B — C (or “ABC”) reaction, as the one to
produce furfural. In the main part of the article, we assess the variation in the final values,
the product composition, in the ABC reaction using Monte Carlo simulation, by repeatedly
solving its ODEs, through numerical integration to keep generality, the initial values being
assumed Gaussian. The final values are simulated on the web pages for exploration, show-
ing the Web as a medium for scientific computing and use in publications, also easing the
academia-industry connection.

Key-words: Chemical kinetics; Monte Carlo simulation; ordinary differential equations;
random initial values; scientific computing; web-based application.
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1. Introduction

In solving differential equations, a random variation in their initial values induces variation
on the successively computed and, thus, final values.! The mathematical problem addressed
will be illustrated with an application in chemical reaction kinetics, the branch dealing with the
speed or “rate” of reactions, using the Monte Carlo methodology. A simultaneous, clear goal
in the study is, through results verifiable in web pages, to show the pertinence of web-based
computing, which is rarely present in scientific publications and even in the university context.

In many production cases, such as in the broad reaction class adopted for illustration, the final
values ought to match a target, and are thus the critical results, randomness making those values
unpredictable. In the case of chemical reactions, typically described by a system of ODEs, an
uncertainty in the reactants’ composition (“initial values”) inevitably causes deviations on the
product’s composition (final values). In an industrial context, variations are more liable than in
the laboratory, as the reactants’ composition can undergo incidental, perhaps small, random vari-
ations from their specifications. These variations, to be assessed computationally in this article,
should desirably have a minor impact on the objective of the reaction, which is the specified
composition. The variations in the final composition are unpredictable because the values in the
reactants’ composition not only are unknown but also change from case to case, at random. So,
our two quantitative tasks are to create the basic uncertainty, and observe its effect.

As regards variations, deriving an analytical relation between the initial and final variations is
unviable for ODEs resolved numerically. The problem, thus, fits the Monte Carlo methodology,
with reliable results if a reasonable random behavior is assigned to the initial values.

The behavior of the initial values will be given by a set of Gaussian distributions centered on
their correct values. For each variable in the ODEs (vs. time), its correct initial value will act as
the mean, p, of its Gaussian, and its variability will be assigned to the standard deviation, o. The
set of o values will, therefore, be the problem variables to be explored.

Questions arise in handling the o values, since the initial values, the reactants’ composition,
can be zero or near, affecting the Gaussian assumption, and may be quite diverse, e.g., 0.1, 20,
orders of magnitude. This is discussed later, leading to shift from o to coefficients of variation.

Regarding other approaches to this article in the literature, both the web-based environment
endorsed and the methodological, mathematical problem addressed seem unreported, on chem-
ical reactions or not, but some example references follow (chronologically). Higham [1] relates
chemical reaction rates to their ODEs, giving Matlab scripts. Kuntsche et al. [2] give a website
for modeling, allowing no execution, such as the hard Belousov-Zhabotinsky (MOSAIC [3]) re-
action. Pozna and Precup [4] give results on the observation process modeling, with a case study.
Liang et al. [5] present a kinetic study with ODEs similar to those of furfural. Ye et al. [6] list
progress in furfural production, due to its broad application prospects. Serban et al. [7] mention
useful websites that, however, offer only programs to install. Misra et al. [8] say there are very
few tools to test web-based applications, but their website gives no suggestion, and, on trying a
proposed set of data, gave an error. Russo et al. [9] present an unrelated “kinetic Monte Carlo”.
Bogdos et al. [10] mention a web-based application, supplying only a repository. Abramov et
al. [11] distinguish the dynamics of data from that of official statistics. Egsiz et al. [12] devise
deep-learning models to predict vitamin D status. Yan et al. [13] propose a semi-supervised
ensemble fuzzy system dealing with missing values. Finally, Helo et al. [14] refer the impact of
technology on supply chain, and show static explorations. A website akin to our web pages, in a

'Out of our focus are implicit or partial differential equations, boundary values, though similar questions would apply.


https://cpros.azurewebsites.net/
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university, is Ponce’s [15], on Hydraulics, but see also Arsham’s [16].

The above works relate to our study through concepts like simulation, web-based, kinetics,
Monte Carlo, Internet, but omit web pages (Cambridge Dictionary) for display or user verifi-
cation, where a browser is the sole need to solve a class of problems, the user just supplying
data to obtain results. We have endorsed web-based work, hence citing various works of ours
([17]-[21]). (We recognize the uneasy leap into the Web as a computing medium.) Some articles
nowadays offer their programs, perhaps in languages strange to the reader. Citing the ‘FAIR’
initiative ([22] or addendum): “There is an urgent need to improve the infrastructure supporting
the reuse of scholarly data.” [our emphasis] Its 52 authors duly write “data”, but the lack seems
worse about working programs in the literature, whereas web pages can be a simple alternative.

In the present text, some hyperlinks are given, indicated in the usual ‘underline’ style.

In the next parts of the paper: Section 2. (“The Kinetic Problem”) mentions the chemical
reactions’ ODEs used; Section 3. (“Resolution Approach”) determines constants in ODEs and
details the Monte Carlo approach; Section 4. (“Computational Structure”) focuses the web pages
setup; Section 5. (“Results and Discussion”) shows numerical effects of the said variation; and
Section 6. (“Conclusions”), summarizes the approach and findings.

2. The Kinetic Problem

Our main, illustrative reaction is the ABC reaction, with generic components. It is a case of
consecutive, irreversible reactions, chosen because of its computational simplicity and frequency,
namely, in organic chemistry. The reaction to produce furfural follows the same kinetics. These
two reactions are now described, followed by a reversible reaction with 4 components, the ABCD
reaction. Another model, peripheral to our study, an SIR-type for epidemiological evolution is
shown only in a web page (in List 1, below).

The first case of consecutive irreversible reactions is the ABC reaction, written in (1) (or just
A — B — (), and its assumed first-order kinetics (no cross products), with a = [A], etc., is
described by this system with the chemically obvious three ODE:s:

ABLB

B X2, C (1)

da/dt = —kqa(t)
db/dt = —ksb(t) + Era(t) 2)
de/dt = kab(t)

Their initial concentrations (time, 0) are, with working values (ag, bo, ¢o) = (1., 0., 0.),
thus, an “initial value problem” (IVP). The ODEs are (mathematically) explicit, so, the proposed
exploration is viable in moderate run time, crucial for Monte Carlo simulation.

The second case is the reaction to produce furfural (from Latin “furfur”, (wheat) bran?), short
for furfuraldehyde, was reported [23] to have the previous kinetics. Furfural (IUPAC nomencla-
ture furan-2-carbaldehyde), in Fig. 1, is a valuable biomass-derived chemical. The reactions to

produce it are HE k—1> FU k—2> DE, where HE, FU, DE are hemicellulose, furfural, degra-
dation products, respectively. With (A, B, C) = (HE, FU, DE), the ODEs in (2) are precisely

2De Kleie, Es salvado, Fr son, Pt farelo, Ro tdrate, Ru ompy6u.


https://dictionary.cambridge.org/dictionary/english/web-page
https://www.nature.com/articles/s41597-019-0009-6
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applicable. The determination of the rate constants from experimental data will be given (with
its web page) as a short addendum in Section 5. (“Results and Discussion”).
o
o

7 "
Fig. 1. Furfural (CsH40O5).

For completeness, a case of a reversible reaction is included, though secondary to our scope.
It is a numerical example (without an analytical solution) of a “reversible reaction with the dimer-
ization of an intermediate” (component C). It is designated here the ABCD model, from “param-

k k
eter estimation” [24], with unidentified components, A to D, A + B k:l Cand C+C % D.
2 4

The following, reported ODEs, with given (ag, by) = (2.1, 3.1), and 4 rate constants, are readily
computed in web page [25] with its default data (web pages listed in Section 3., 2."¢ paragraph).

{dC/dt = ki(ap — C — 2D)(bg — C — 2D) — kyC — 2ksC? + 2k4 D )

dD/dt = ksC? — k4D

3. Resolution Approach

The resolution approach, now described, relates to: (i) the determination, where pertinent, of
the ODEs’ parameters, which, in the application, are the reaction rate constants, done through a
cautious choice of the regression optimizer; (i) the detail of the Gaussians’ simulation; (iii) the
exploration by Monte Carlo; and (iv) the application to the ABC reaction.

The computations for the rates’ determination (SIR, ABC, ABCD, furfural) and for the
simulation can be freely verified in the following web pages: solving the SIR model direct,
inverse; [26] determination of ABC rates; [25] determination of ABCD rates; [27] determination
of furfural rates; [17] Monte Carlo simulation with the ABC reaction.

3.1. Determination of the rate constants

As experimental data are accessorily available for the reactions (ABC, ABCD, furfural), it be-
came opportune to revisit the determination of reaction rates, done by typical regression. Useful
findings arose on the better solver in Python, the obvious 'curve_fit' or 'minimize' [28].

The medium for the computation were the constructed web pages, written in PHP [29]. The
regressions are conducted in Python, mostly, and Fortran 90. With the data in Table 1, the prob-
lem parameters, which are the 2 rate constants in (2), k1, ko, from an applicable reaction ([30],
data seemingly made up), can be determined by adjusting the integrated model to the data. The
number of components in the system of ODEs will be denoted by K and the number of instants
by T'. So, in Table 1, from [30], K =3 and T = 12.

Some models in ODEs are analytically integrable, which is the present case. For such in-
stances, e.g., Mathematica ® [31], Maple ® [32] are options. Notwithstanding, to assure gener-
ality, numerical methods are always used here.

In the case of Fortran, our minimization uses a Nelder-Mead search, one of the innumerable
aids by Burkardt [33]. Another handy path would be to build a 'module’, compiled via a mere
call to 'f2py' [34], and directly callable from Python, with no auxiliaries.


http://web.tecnico.ulisboa.pt/~mcasquilho/randomkinet/directSIR/P-directSIR.php
http://web.tecnico.ulisboa.pt/~mcasquilho/randomkinet/curfitSIR/P-curfitSIR.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/com/Fx-ChemReacOpt.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/fitKinet/P-fitKinet.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/Furfural/P-furfural.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/Furfural/P-furfural.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/P-ranKin.php
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Table 1. Experimental kinetic data

Instant Time [A] [B] [C]
1 0 1 0 0
2 2 0.88 0.12 0.003
3 6 0.69 0.29 0.03
10 120 0 0.12 0.88
11 150 0 0.06 0.94
12 200 0 0.02 0.98

Table 2. Rearranged data

Time 0 2 ... 150 200 | O 2 ... 150 200 | O 2 ... 150 200

[A] [B] [C] 1 088 ... 0 0 0 012 ... 006 002| O 0003 ... 094 098

In the case of Python, the common option for curve fitting, if 'scipy.optimize’ [35] is adopted,
is its 'curve_fit' function. Yet, it has an adverse feature for application to multiple dependent
variables, as is the case in systems of ODEs. In this type of problem, there is a single independent
variable, but there are more than one dependent variables, one for each chemical species. Thus,
in Table 1, there is one column for time, and K > 1 columns for the dependent variables.

If 'curve_fit' were chosen, the data would need rearrangement into strictly two columns: the
independent variable column, for time, by concatenating K = 3 instances of the original vector;
and the dependent variable column, as a single vector of size T'. K = 36 by concatenating the K
columns of the remaining data, as shown in Table 2 (landscape for shortness) and detailed in [21].
The first row (of length T'. K = 36) would be the values of the new independent variable, and
the second (same length) the values of the new sole dependent variable.

A simpler method (in the same Python module) was adopted, the 'minimize’ function (drop-
ping some 'curve_fit' features). In correspondence with the original (7', K) sized matrix of data:
(1) a new matrix of same shape (T, K) of the calculated data is produced through the integrated
ODE:s with initial guesses of the parameters (i.e., k1, k2); and (if) a sum of “distances”, say .S,
between the two matrices is minimized. This scalar is a function of the two problem parameters,
S(k1, k2), which becomes a standard multivariate optimization. The choice of initial guesses is
the typical difficulty of iterative processes, liable to nonconvergence, but the present problem is
well-behaved in that sense. The usual sum of squares for .S can of course be replaced by other
criteria (“minimax”, in absolute or relative terms, etc.), but such finer view is irrelevant here.

The multivariate optimization approach adopted was again the Nelder-Mead, the default in
'minimize'. In case constraints become necessary, as to avoid negative k values, the SLSQP [36]
sequential quadratic programming is used.

3.2. Simulation of Gaussian random variables

Applying Monte Carlo with a Gaussian variable needs precautions due to the physical range
of the variable and the random number generator (RNG), always recalling its range, typically
[0,1).

The o value for a variable, respecting its range, is difficult to set. Instead of a direct o, the
coefficient of variation, ¢, = o/, becomes a simple, consistent option. This still poses an issue
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in the frequent cases of p = 0, but the relation is used reversely, with ¢, as input: o = p ¢,.

The behavior of a Gaussian with positive mean near 0 (u 2 0) is arguable if negative values
are nonvalid. This, though peripheral to our purpose, is attended below.

We relied on the native RNG in Python, which directly simulates a Gaussian distribution with
given p and o (named 'loc', 'scale’). No reference was found on border value failure, which can
arise from inverting the cumulative Gaussian. However careful the choice of o may be as the
counterpart to u, the simulation of initial values must, at least, conform to their physical ranges
as reactants’ composition. A delicate case is the simulation of values for small ;1 2 0: with the
chosen Gaussians, a way to avoid the (rare) negative values is to skip them. (Truncated Gaussian,
Gamma or such are alternatives, out of our scope.) An RNG usually produces uniforms, R €
[0,1), and (using the “inversion method”) its Gaussian z g is 7 = p + o®~1(R), with @1 the
inverse cumulative.

The improbable R = 0 produces zzp = —o0, thereby, an interruption (“abort”) or at least an
inordinate negative. (Excessive positive, rare values cause no interruptions.) For an (unreported)
minimum, say R = 3 x 1073% itis @1 (R) = —37.5, widely exceeding the 3 in the customary
practical interval ;1 £ 30. To avoid interruption, negative initial values are skipped, counted, and
shown in the end of execution. It may be seen that these values are absent or very rare, due to the
realistically small variabilities (through c,) used.

3.3. Methodology for the simulation

The assessment of the effect of the initial variation is solved in two steps: (i) if applicable,
known concentrations (as in Table 1) are used to determine the rate constants; and (ii) the initial
concentrations are made random with the Gaussians for the K components, X; ~ N(u;, o)
(non-standard, identical G(u, o) would be more Engineering-like), for ¢ = m..n (concise nota-
tion for Vi € [m,n|, i € Z), where the various p will be made equal to the desired (nominal,
exact) initial compositions, g = (ag, b, o), guarding, for small x’s, against liable negatives.
Other distributions, as a said Gamma, might be used: g(z;k,0) = ﬁ(w/@)k’lexp(—x/ﬁ),
with (shape, scale) = (k, #). Such option would, however, need considerations out of our scope
to find values for its two parameters.

3.4. Exploration by Monte Carlo simulation

With the rate constants known, the effect of variation in the initial values (reactants) upon the
variation in the final values (products) can be observed. As the computing is conjoined with its
web page, a synthetic description follows those lines.

The reaction is computationally started (time, 0) and runs until a given final time, ¢ y. The rate
constants, known or [21] previously determined, and the admittedly correct p’s are supplied, and
the variations are substantiated in the ¢,’s. The reaction will now be run a large N (thousands)
times, so that a statistic of final composition (at ) may be assessed. To make the results more
concise, an “incumbent” component, k (1 < k < K), is chosen, with an assigned admissible tol-
erance, such as 5%, in the target concentration. Making variations on more than one component
unnecessarily complicates the conclusions.

The number of Monte Carlo trials, /N, and the random number generation seed are now
inserted, with its repeatability, 'irepeat’ = 1 (as for debugging) or O for pure random. Usual values
of N are larger (millions), but it is to be noted that, for each trial, the whole system of ODEs
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is (numerically) solved from the beginning, because it is the initial values that keep changing,
following the Gaussians. Of course, no way was found to relate the initial variation size to that
of the final variation. Further optimization of the numerical integration algorithm itself would be
in order for more complex ODEs and longer Monte Carlo runs.

4. Computational Structure

The computational structure of this study will be described in parallel with its operation in
the web pages, in which this track is not visible. The description follows the core, ABC case. In
the pages, the user supplies the problem data, and control is passed to a Python script that does
the calculations, returning the results in alphanumeric text and graphs. For these, we favored
(free) 'gnuplot’ neutrally callable by other languages, instead of the obvious Python 'matplotlib’
module [37] to safeguard generality if using non-graphical languages (such as C, Fortran). Even
with other languages, Python is a suitable manager, acting “as glue” [38]. This affinity may be
crucial for speed, because Python is (mostly) interpreted, not compiled, a concern precisely in
an extensive Monte Carlo simulation. The language versions are: Python 3.9, 'gnuplot' 5.4, and
PHP 5.6, the versions in the public (Linux) system in the University.

In the web pages, the user submits the problem data, and clicks 'Execute' to obtain: (i) the
rate constants, in the inverse problem (or [26]); or (i) the behavior of the final composition, in
the direct problem (or [17]). It is the latter, related to our main objective, that will be detailed. The
execution, facilitated by the presence of default data, is in a simple style fit for Engineering. The
dynamic results are built in HTML with the web-native language PHP [29], and the architecture
consists of the web page as a front-end user interface, and a back-end for the computation.

The web interface is accessed by the user, accepts the task’s arguments (data), processes
them, schedules the task, and sends data to the back-end, which finally replies, thus building and
showing the output in a new, temporary, dynamic web page.

The computed results are formatted via the HTML tag 'pre’ (pre-formatted text), and dis-
played as the final web page on the user’s terminal. The computations are executable on the
University public system, maintained by its Computing Centre ([39]): a Linux operating system,
reporting (‘'uname') 16 GB memory, amd64, Debian 5.10.70 (2021), x86_64 GNU/Linux, and
('Iscpu’) 8 CPU’s, Xeon, 2 GHz.

The procedure, from the web page [17] and Fig. 2, is (problem particular names in italics):

a) The user reaches the web page, P-ranKin.php, and accepts the default data or inserts other
in an HTML 'form', data to be sent to the next file via HTTP request (‘P-’ for Python).

b) Clicking ‘Execute’ sends the data to an intermediate PHP file, via 'form' with attribute
'action=RanKin.php', which sends the input to the Python script (next) as arguments. This
PHP will get the results back from the Python execution via 'stdout’, to create a temporary,
dynamic PHP results web page.

¢) The Python script, ranKin.py, is run through PHP 'shell_exec'.

d) Python’s output (‘stdout’) is sent to the ‘Results’ page as HTML 'pre' tag with text and
graphs (‘png’) just produced via Python 'base64' (leaving no files for deletion), and pre-
venting clashes between concurrent users.

e) Auxiliary files — PHP environment files inserted by 'include’, and cascading style sheet
and images characterizing the website.

The italicized names suggest substitution for other problems, with the structure in Fig. 2.


http://web.tecnico.ulisboa.pt/~mcasquilho/compute/com/Fx-ChemReacOpt.php
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/randKinet/P-randKinet.php

Effect of Random Variation of the Initial Values 293

Php (Php

P-ranKin.php RanKin.php
web page
P | Results
. » web page
ranKin.py

Fig. 2. Communication path from the ‘input’ web page [17] to the ‘output’ (Results) web page.

Web-based execution adds no difficulty to solving a problem, beyond its inevitable scientific
hardship. We use the same executables on the command line for debug and long runs.

Writing programs in a compiled language (as C or Fortran) is more arduous than, e.g., user-
friendly Matlab or Python, yet, if run times become large, compiled languages can be required.
This happens in more complex problems, as suggested by the longer simulation runs to be shown.

In summary, to observe the said kinetic behavior, the data for the example are the following,
giving results just by clicking 'Execute’ if with default values (in parentheses):

a) Final time of the reaction, £ (30) time units, as minutes;

b) Rate constants (0.06296 0.02115);

¢) Concentrations’ i (1 0 0), of the respective 3 (K') components;

d) Concentrations’ ¢, (0.1, either one value if all equal or K values);
e) Incumbent (1, selected reactant for observation);

f) Tolerance (5%), selection from 10%, 5%, 2%, 1%;

g) Trials (2.e+4) and seed (75357, used if ‘Other’) for the simulation;
h) Points (100) for both plots (evolution and simulation);

i) Show values (No) (of the plot coordinates).

Results are included (Section “Results and Discussion”) for some data combinations. The
final “behavior” is simply a histogram of the simulated values, estimating the probability density
functions. The curves bear resemblance to Gaussians, but unraveling it is out of our scope.

5. Results and Discussion

The effects of the random variation are now presented, after a description of the strategy of
the Monte Carlo simulation. The numerical results of the simulation are explored to assess the
effect of the initial composition variation on the final composition, from the web pages (in List
1), where the results can be confirmed.

As an addendum to our results, we give just a summary of the determination of rate constants
(peripheral to our scope) for the furfural reaction (Section 2.). The constants arise from (default
data): compositions vs. time; initial guesses, (0.008,0.008); computational mode, ‘optimize’.
The result is (link?) (k1, k2) = (0.00783,0.00047), with absolute deviations S 0.05.

3These “links” connect to web page executions that run for ~ 10-30 s.


http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/Furfural/P-furfural.php
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5.1. Strategy of the Monte Carlo simulation

In a Monte Carlo simulation, an inherent issue is its “run length”, which is often solved
doubly by computational trials, their repetition consolidating the length. A run length tentative
estimation is, e.g., at the website [16]: for pilot run length of 500, composition estimate 1.,
variance 0.5, significance 5%, and relative error 5%, it gives N ~ 4000, whereas half the error
(2.5%) of course quadruples it to N = 16000. A value of N = 2 x 10* was used from this
estimation, this length typically fitting in the prescribed time limit in the University’s website.
This length sufficed to yield “reproducible” results (in the sense of Monte Carlo). An arbitrary
unique simulation seed of 75357 is used to permit verification of the results by a user.

To initiate the exploration itself, a small value of o, say, 1/10, as a fraction of p, i.e.,
¢, = 0.10, was deemed reasonable. In order to improve (decrease) this variability, a criterion
of successive reductions was envisaged. Since a “geometric” reduction appeared more adequate
than, e.g., an “arithmetic” one, a Renard-type [40] “RS5” reduction was adopted. This means that
o will successively be divided (the 5 in RS) by ¥/10 = 1.58489 . .. . For the said first o = 0.1,
this gives the sequence (rounded) 0.1, 0.0631, 0.0398, 0.0251, 0.0158, 0.01, this last one a handy
value, after the desired five reductions.

Values of tolerance in the final composition were chosen at usual 10%, 5%, 2%, and 1%. The
question to be resolved is, thus, to assess the effect of, say, a variation of 5% (i.e., ¢, = 0.05 or
o = 0.05 p) in a reactant’s composition upon the resulting fraction nonconforming.

The final concentrations will be classified as whether they fall inside acceptable intervals,
the “fraction conforming”, and in the opposite case the “fraction nonconforming”. For a correct
operation, this fraction nonconforming must be, of course, the smaller the better.

The expressions “fraction conforming”, “fraction nonconforming” (or “defective”*) are from
the Quality discipline (“fraction”, attributive noun, and “conforming”, “defective”, adjectives as
nouns. A fraction nonconforming, to be denoted by FNC, means that, e.g., for an FNC = 10% in
final composition, this composition falls that often, 10% of the cases, outside a specified interval.

5.2. Numerical results of the simulation

The exploration of the effects of values of ¢, and tolerance was done by the Monte Carlo
simulation mentioned, applied to the ABC reaction (using web page [17]).

A test to the “reproducibility” of results was executed to perceive the sufficiency of the sim-
ulation run length, since its best value is not easy to set. The mentioned N = 2 x 10* met that
end without exceeding our web-based computing limit of ~2 min. Private, direct, command line
long runs, out of the Internet, have no practical time limit.

Long runs point to attain “smooth” curves, shedding light on due length. Thus, long runs
of 0.1, 0.5, 0.75, and 1.5 million trials were executed on the command line (with exactly the
same program). The test case has a (heavy) ¢, = 0.1 and tol = 5%. The execution times were,
respectively, 1.5, 13, 20.5, and (double) 41 min. The curves for the first and last run lengths
(the penultimate curves resembled the last) are in Fig. 3. The enormous fraction nonconforming
FNC = 62% is a sheer consequence of the high ¢,. Regarding run length, in order to permit
verification by the user, the said N = 2 x 10* trials (default) will be used.

Two cases were run from the command line with larger N = 0.5 million trials: the cases
¢y = (0.10, 0.04) took 15 min each (above the website limit), and the results, visible at [41],

4Deprecated, because a defective item can be effective in another context (or for semantic bias).
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Fig. 3. Long runs, ABC reaction, with 0.1 (left) and 1.5 (right) million trials, giving FNC ~ 62%,
color signaling the FNC area.

were similar to those in Fig. 3, FNC =~ 62%, and FNC =~ 21%, respectively, sustaining our
default N. Each integration of the problem ODEs, thus, took 15min/(0.5 x 10%) = 2. ms.

5.2.1. Exploring variability and tolerance

Starting the exploration proper, two introductory cases were computed, with ¢, = (0.10, 0.04)
and default initial concentrations, (1, 0, 0), tol = 5%, and the adopted N trials and seed. The
worse case, with ¢, = 0.10, yields (link) FNC = 61.9%, and the better case, with ¢, = 0.04,
yields (link) FNC = 20.9%. These results for the reaction illustrate the effect of the variation
of the initial compositions on the final ones. (Both FNC'’s, industrially very dissatisfactory, give
an idea of the ranges of ¢, to explore.) The final nonconforming (defective) compositions fall in
tails of the distribution (histogram) that are undesirably outside the 5% tolerance, or ‘tol’, indi-
cated by the two parallel vertical dash-dotted lines in the images. Reducing the initial variation
— not an ordinary effort — is, of course, a way to improve final quality.

Led by the previous results, two improved cases are added (with values picked from data
annex to Fig. 4, below) and tol = 5%: (i) ¢, = 0.0251, giving (link) FNC = 4.74%; and (ii) ¢, =
0.0158, giving (link) FNC = 0.15%, with graphs in the web pages.

Changing only the acceptable tolerance, in two cases now addressed, maintains the same
behavior but alters the fraction nonconforming (quality is indeed relative). For a c, kept at
0.0158, a lax tol = 5% yields (link) FNC = 0.15%, which seems good, but reducing to tol = 2%
raises the fraction to a dismal (link) FNC = 20.4%, anyway a hardly predictable sensitivity.

5.2.2. Refinements

The answer to the question posed in this article is in the data annex to Fig. 4 (below), where,
for instance, the values tol = 5% and ¢, = 0.1 lead to an enormous FNC = 61.9%. To reduce
(improve) this fraction, obviously, a smaller ¢, = 0.0631 leads to a lower (better) FNC of 42.4%.
An improvement would of course be expected, but its now known magnitude was not predictable.

All the results presented must be looked at prudently. The assumptions of the adherence of the
ODE:s to the real matter, and of the random behavior (Gaussian) are just reasonable hypotheses.
Anyway, the tendencies and their magnitudes are certainly trustworthy.

Finally, a certain, common FNC can of course be obtained for different target tolerances:
e.g., FNC = 8% (high, quite “unindustrial”, for clearer results), for two tolerances, 5% and
10%. Solving the inverse problem semi-manually led to: (i) (link) (tol, ¢,) = (5%, 0.02867);
and (i7) (link) (tol, ¢,,) = (10%, 0.05734).


http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.1&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.04&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
https://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.0251&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
https://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.0158&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.0158&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.0158&incumb=1&tol=0.02&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
https://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=0.028672&incumb=1&tol=0.05&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
http://web.tecnico.ulisboa.pt/~mcasquilho/compute/explore/RanKin/GRanKin.php?tfinal=30&rates=+0.06296+0.02115&concmu=+1.+0.+0.&conccv=+0.057344&incumb=1&tol=0.10&ntrials=2.e%2B4&repeatable=1&iseed=75357&npoints=100&ishow=0
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Various calculations were done to show how the initial variation, through c,, affects the
nonconformance, i.e., FNC, fraction nonconforming, defective, of the final composition. This
was done for the values in data annex to Fig. 4: ¢, through ¢, decreasing (improving) from 0.1
to 0.01, according to the Renard series R5, and tol = (5%, 2%, 1%). The results appear in Fig. 4,
confirming the opposing tendencies: for a given c,, a high tolerance, 5% (careless operation)
leads to lower fraction nonconforming, FNC, while a low tolerance, 1% (strict operation) leads
to higher FNC. Beyond obvious fendencies, it is the computation by simulation that provides the
concrete values of acceptability and their sensitivity. For application, two opposite factors are
at stake: initial variability and final quality. Both are “expensive”, so, the economic decision to
balance them will be possible with real economic data.

Nonconformance

€y tol=5% tol=2% tol=1%
0.1 0.616 0.839 0.919
0.0631 0.424 0.753 0.874
0.0398 0.208 0.613 0.799
0.0251 0.045 0.428 0.691
0.0158 0.001 0.204 0.526
0.01 =0 0.046 0.321

0 I I I I I I I 5
0.1 009 008 007 006 005 004 0.03 00.02 0.01

Fig. 4. Data (left) and fraction nonconforming (o o ¢,) for tolerances 5%, 2%, 1% (right).

6. Conclusions

A question in ODEs was studied computationally using a chemical kinetics illustration to
investigate the effect that an undesired random variation in the initial values (the reactants’ com-
position) has on the variation in the final values (the product composition). Many other systems
of ODEs in STEM (Science, Technology, Engineering, Mathematics) might obviously have been
chosen.

All our computing resides in web pages as a computing medium. Monte Carlo simulation was
adopted, since the fact that the underlying ODEs are, in general, solved numerically precludes
finding an analytic relationship. The initial values were subjected to Gaussian behavior to observe
the final values against their specification. The results show how much a variation in the initial
values leads to a variation in the final values: high input variation, expressed as coefficients of
variation, c¢,, implies high, undesirable output variation, measured as fraction nonconforming
(FNC). For a tolerance of, e.g., 2% admitted in final values, if ¢, is relaxed from 0.01 to 0.025,
FNC goes from a passable 4.6% to a huge 43%. Sensitivity is, thus, also reachable by this tool.

The languages PHP and mostly Python (with 'gnuplot’) were operant, and our programs are
the same off or on the Web. We show this client-server computing as a web-based access and
execution, without any user need, and the web pages, thus, permit to verify the results. The
architecture used serves an extent of other problems.

The study provided: an option for Python 'minimize' against 'curve_fit'; the sought assess-
ment of the effect of initial values’ variability; and the operation on web pages. We value direct
web-based computation verifiability, scarcely used in articles. From our experience in academy
and industry, Web computing is fit for both and their connection.
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