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Abstract. Internet of Things (IoT) device has significantly increased the need for re-
liable and efficient communication systems. Space–Air–Ground Integrated Network (SA-
GIN) addresses this need through its hierarchical structure, by integrating Low Earth Orbit
(LEO) satellites, High Altitude Platforms (HAPs), and Unmanned Aerial Vehicles (UAVs).
This paper focuses on maximizing the downlink sum-rate in a Non-Orthogonal Multiple Ac-
cess (NOMA)-based SAGIN-IoT system by jointly optimizing the geographical locations and
transmit powers of HAPs and UAVs, bandwidth allocation ratio, and link selection between
a LEO satellite and IoT devices. The problem is formulated as a complex joint optimization
task involving both discrete and continuous variables, reflecting the dynamic and large-scale
nature of the SAGIN network. To solve this, two solution algorithms are employed: a deep re-
inforcement learning (DRL) algorithm and an Alternative Optimization (AO) algorithm. The
proposed DRL framework leverages a deep Q-learning (DQL) architecture to efficiently nav-
igate the high-dimensional and dynamic environments of SAGIN. The AO algorithm, on the
other hand, decomposes the original optimization problem into two subproblems, iteratively
solving them using Differential Annealing (DA). The performance of the proposed DQL and
AO algorithms is compared with that of Gradient Search (GS). Simulation results demonstrate
that DQL achieves superior performance in terms of overall sum-rate optimization with lower
computational complexity. While the AO algorithm provides competitive results, it requires
higher computational complexity than both DQL and GS.
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1. Introduction
The ongoing fast development in information and communication technology has established

the Internet of Things (IoT) as a driver to support diverse intelligent applications ranging from
virtual reality to smart agriculture and remote environmental monitoring. These types of IoT
applications increasingly rely on high data rate communications to transmit continuous streams
of sensitive data and support real-time decision-making. Consequently, ensuring high downlink
data rates is essential to support the large-scale data requirements and responsiveness of modern
IoT systems. Moreover, IoT applications are expanding into infrastructure-less environments,
where connectivity is limited by geographical and economic restrictions [1]. As the number of
IoT devices is expected to grow to approximately 30.9 billion by 2025 [2], traditional terrestrial
IoT technologies may present challenges in keeping up with the required spectrum efficiency
and quality of service (QoS) in future IoT networks [3]. To overcome these limitations, satel-
lite technologies are rapidly developing [4], expanding network coverage [5] and connectivity
beyond conventional terrestrial networks [6]. A strong example is the Starlink project, which
demonstrates how global coverage and seamless connections can be achieved, even in remote
regions [7]. The primary solution involves employing satellites as a backhaul for terrestrial net-
works [8]. However, direct satellite communication has inherent limitations in communication
resources, which restricts its ability to meet high-data rate requirements for IoT applications. To
overcome this problem, high-altitude platforms (HAPs) and Unmanned Aerial Vehicle (UAV)
are introduced as potential solutions. HAPs operate in the stratosphere at altitudes of 17-22 kilo-
meters, offering cost-effective, high-capacity communication services and enhancing terrestrial
networks by providing over-the-horizon coverage. Meanwhile, UAVs have become a major focus
in research and industry due to their adaptable positioning and direct line-of-sight communication
with ground devices. Together, these aerial platforms enable more flexible, high-capacity com-
munication links between satellites and ground IoT devices. In this context, a space-air-ground
integrated network (SAGIN) has emerged as a promising solution for seamless communication
coverage, integrating LEO satellites, HAPs, and multiple UAVs. This multi-layered architecture
combines the global coverage of satellites with the flexibility and capacity of aerial platforms to
deliver reliable, high-speed communication services.

In a SAGIN architecture, variations in path loss and transmission delay occur differently due
to the different altitudes of LEO satellites, HAPs, and UAVs. Therefore, selecting the proper
communication links between ground IoT devices and LEO satellite, whether directly or through
HAPs and/or UAVs, is an important control parameter for enhancing the performance of the
SAGIN system. Additionally, the deployment location of the HAP and UAVs is important in de-
termining the likelihood of maintaining line-of-sight connections to ground IoT devices, which
can further affect system performance. Although HAP, and especially UAVs are flexible in terms
of deployment location and mobility, their operations are constrained by limited onboard en-
ergy. This restricts the maximum transmit power available for signal transmission, highlighting
the need for efficient power management strategies [9]. In this context, Non-Orthogonal Multiple
Access (NOMA) is an effective technology for improving spectrum efficiency and overall system
capacity. By allowing multiple users to share the same frequency resources with different power
levels, NOMA achieves better spectrum utilization compared to traditional orthogonal access
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methods [10]. Integrating NOMA into SAGIN architectures has gained attention as a promising
algorithm to further enhance system performance in next-generation IoT networks. Apart from
energy constraints, wireless bandwidth is another critical constraint in SAGIN’s multilayer plat-
form architecture. Hence, optimizing the bandwidth allocation policy is required to efficiently
distribute resources across different network layers. The details of the related work are provided
in [33], and the references cited in [33] correspond to the list given in the References section of
this paper.

The main contributions of this paper are summarized as follows:

1. System Design: A SAGIN communication system is designed, where an HAP and mul-
tiple UAVs are deployed to serve IoT devices randomly distributed at ground level. An
optimization model is formulated for NOMA-based SAGIN-IoT systems to jointly op-
timize multiple control parameters, including the deployment locations of the HAP and
UAVs, bandwidth allocation ratio, link selection, and transmit power. The objective is to
maximize the downlink sum-rate of the IoT system while satisfying all system constraints.

2. Solution Methodology: Two practical solutions are presented: (1) a DQL framework that
efficiently handles the dynamic and complex SAGIN-IoT environment, and (2) an AO
algorithm that decomposes the original optimization model into subproblems, each solved
using DA, a probabilistic global optimization technique suitable for non-convex problems.

3. Performance Evaluation: The simulation results of the proposed DQL and AO algorithms
are compared with the Gradient Search (GS) algorithm. Results demonstrate that the pri-
mary proposed DQL algorithm outperforms both AO and GS in terms of convergence
speed, scalability, and overall downlink sum-rate, while maintaining lower computational
complexity.

The structure of the paper is as follows: Section 2 describes the proposed system model,
which includes the network scenario and the communication channel model. Section 3 presents
the optimization problem. Section 4 explains the DQL architecture and the training procedure.
Section 5 introduces an alternative optimization algorithm. Section 6 discusses the simulation
results, and Section 6 concludes the paper.

2. System Model

2.1. Network scenario
In this network scenario, a downlink SAGIN-IoT communication system is considered, where

a LEO satellite, an HAP, and multiple UAVs are employed to support multiple IoT sensor devices
(SD), as illustrated in Fig. 1 of the supplementary file provided in [33]. The set of SDs is
denoted by I = {1, ..., i, ..., I} and the set of UAVs by U = {1, .., k, ..,K}. Considering
3-dimensional Cartesian coordinates, the location of the i-th SD, the k-th UAV, the HAP, and
LEO satellite are denoted as ui = {xi, yi, zi}, uk = {xk, yk, zk}, uh = {xh, yh, zh} and u0 =
{x0, y0, z0}, respectively. The total duration of the operation is set to T = {1, ..., t, ...T}. To
maximize spectral efficiency while managing cross-user interference, non-orthogonal multiple
access (NOMA) technology is employed, as it allows multiple users to simultaneously access
common channel resources, including time slots, frequencies, and codes. It is noted that NOMA
works by superimposing signals at different power levels and decoding them using successive
interference cancellation (SIC) at the receiver.
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2.2. Communication channel model
The communication channels between space-air platforms and SDs are influenced by both

small-scale and large-scale fading. Small-scale fading occurs due to multi-path propagation,
where the signal reaches the receiver through multiple paths, causing rapid fluctuations in signal
strength over short distances. On the other hand, large-scale fading is modeled using free-space
path loss [23], where the channel quality is affected by the long distance between transmitter j
and SD i. It can be formulated as:

PLj,i[t] =

(
c

4πfdβj,i

)2

, j ∈ {k, h, 0}, (1)

where h, k, and 0 correspond to the k-th UAV, HAP and LEO satellite, respectively. f , c, dj,i, and
β denote the carrier frequency in hertz (Hz), the speed of light (approximately ≈ 3× 108m/s),
the distance between the transmitter j and SD i, and the path loss coefficient, respectively. To
accurately represent the Line-of-Sight (LoS) propagation between transmitter j and SD i, small-
scale fading is characterized using Rician fading, given by [24]:

gj,i[t] =

√
ζ

ζ + 1
gLOS
j,i [t] +

√
1

ζ + 1
gNLOS
j,i [t], j ∈ {k, h, 0}, (2)

where gLOS
j,i and gNLOS

j,i represent the LoS component and the NLoS component, respectively.
The LoS component follows a complex normal distribution gNLOS

j,i ∼ CN (0, 1), while the NLoS
component is modeled with the Rician fading parameter ζ.

In the NOMA downlink, the transmitter simultaneously serves multiple SDs. Each SD em-
ploys the SIC technique to decode its signal while managing interference from other signals. The
order of SIC decoding follows the order of decreasing channel gain relative to noise and inter-
cell interference, expressed as |Hj,1[t]|2 ≥ |Hj,2[t]|2 ≥ ... ≥ |Hj,i[t]|2, where the channel gain
is defined as Hj,i[t] = gj,i[t]

√
PLj,i[t] [25]. In this sequence, each SD i successfully decodes

the signals of all SDs with higher decoding priority. For example, if the channel gain of SD i
is lower than SD i′, the SIC process for SD i′ begins by decoding the signal from SD i. Then
SD i′ subtracts the SD i’s signal component from its received signal, enabling it to decode its
own signal without interference from i. Therefore, assuming that all SDs i < i′, the signal i de-
codes its own signal while treating the stronger signal from i′ as interference. Consequently, the
signal-to-interference-plus-noise ratio (SINR) between transmitter j and SD i can be formulated
as:

Γj,i[t] =
pj,i[t] |Hj,i[t]|2

σ2 +
∑

i′ ̸=i pj,i′ [t] |Hj,i[t]|2
, j ∈ {k, h, 0}, (3)

where pj,i represents the transmit power allocated to SD i, Hj,i is the channel gain for SD i, and
σ2 is the Additive White Gaussian Noise. Using the Shannon-Hartley theorem, the data rate for
a single link between transmitter j to SD i is calculated as:

Υj,i[t] = bj [t]Blog2 (1 + Γj,i[t]) , j ∈ {k, h, 0}, (4)

where B represents the total bandwidth, and bj is the bandwidth allocation ratio for all SDs
connected to transmitter j. Because of the limited bandwidth resource, the UAVs, HAP and LEO
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satellite need to share the resource. Thus, the sum bandwidth allocation ratio of the UAVs, HAP
and LEO satellite is given as:

b0[t] + bh[t] +
∑
k∈K

bk[t] = 1, (5)

where b0, bh, and bk represent the bandwidth ratio of the LEO Satellite, HAP, and k-th UAV,
respectively. From (4), the total achievable data rate can be determined as:

Υtotal[t] =
∑
i∈I

(∑
k∈K

Υk,i[t] + Υh,i[t] + Υ0,i[t]

)
. (6)

3. Problem Formulation
This paper aims to maximize the total achievable data rate for the NOMA-based SAGIN-IoT

system by controlling location of HAP, location of UAV uj , ∀j ∈ {k, h}, bandwidth allocation
ratio bj , ∀j ∈ {k, h, 0}, transmit power pj,i, ∀j ∈ {k, h, 0}, and link selection lj,i. Here, the link
selection of transmitter j and SD i is defined as a binary variable, where lj,i = 1 when transmitter
j is chosen for SD i, otherwise lj,i = 0. Hence, the optimization problem can be expressed as:

max
uj ,bj ,pj,i,lj,i

∑
t∈T

Υtotal[t], (7)

s.t. C1 : PUAV
min ≤ pk[t] ≤ PUAV

max , (7a)

C2 : PHAP
min ≤ ph[t] ≤ PHAP

max , (7b)

C3 : PLEO
min ≤ p0[t] ≤ PLEO

max , (7c)

C4 : xUAV
min ≤ xk ≤ xUAV

max , (7d)

C5 : yUAV
min ≤ yk ≤ yUAV

max , (7e)

C6 : xHAP
min ≤ xh ≤ xHAP

max , (7f)

C7 : yHAP
min ≤ yh ≤ yHAP

max , (7g)
C8 : dk,k′[t] ≥ dmin, ∀k, k′ ∈ U , k ̸= k′, (7h)
C9 : Υj,i[t] ≥ Υj,min, ∀j ∈ {k, h, 0}, (7i)

C10 : bj ∈ [0, 1], ∀j ∈ {k, h, 0}, (7j)

C11 : b0[t] + bh[t] +
∑
k∈K

bk[t] = 1, (7k)

C12 : lj,i ∈ {0, 1}, ∀j ∈ {k, h, 0}, (7l)

C13 :
∑
j

lj,i[t] = 1, ∀j ∈ {k, h, 0}, (7m)

where C1, C2, and C3 are the transmit power allocation constraints for the UAVs, HAP, and LEO
satellite, respectively. These constraints ensure that the power levels stay within the predefined
minimum and maximum values. Constraints C4-C7 define the deployment boundaries for UAVs
and the HAP, and ensure that their positions remain within the specified spatial limits. Constraint
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C9 ensures the minimum data rate requirement for the UAVs, HAP, and LEO to guarantee ser-
vice quality, where Υj,min is the minimum required rate predefined for the UAVs, HAP, and the
LEO satellite. Constraint C8 ensures the minimum distance between UAV k and its neighbor
k′ to prevent collisions. Constraints C10 and C11 are for the bandwidth allocation ratio, which
ensures that the total allocation ratio does not exceed the available bandwidth. Constraint C12
serves as the link selection indicator, while constraint C13 ensures that each SD i can select
only one link in any given time slot. Given the non-convexity of the formulated mixed-integer
programming (MIP) problem, achieving an optimal solution via analytical approaches is consid-
erably challenging. To address this, two solution algorithms are proposed: a Deep Q-Learning
(DQL) algorithm under a Deep Reinforcement Learning (DRL) framework, and an Alternative
Optimization (AO) algorithm using Differential Annealing (DA). The DQL algorithm approx-
imates the optimal resource deployment by considering the locations of HAP and UAVs, the
bandwidth allocation ratio, link selection, and transmit power. It operates by interacting with the
environment, using the downlink sum-rate as the reward to guide learning. On the other hand,
the AO algorithm decomposes the original problem into subproblems and solves them iteratively
using DA. This algorithm deterministically updates parameters at each step, aiming to maxi-
mize the sum-rate. Both algorithms aim to achieve this objective by iteratively updating system
parameters to converge toward the maximum sum-rate for the downlink SAGIN-IoT network.

4. Proposed Deep Reinforcement Learning Algorithm
This section begins with a brief description of Q-Learning and DRL. The proposed algorithm

is next presented, which uses DQL to allow transmitter j to learn from the network environment
and adjust its control parameters to obtain the maximum sum-rate for the network. Finally, the
state space, action space, and reward function are defined for the proposed algorithm.

4.1. Overview of Q-learning
Reinforcement Learning (RL) has gained increasing attention in wireless communication due

to its ability to solve complex problems. Q-Learning is a powerful technique for finding the
optimal policy π, which defines a set of strategic guidelines that allow an agent to maximize
cumulative rewards over time. In this algorithm, agents interact with their environment to achieve
their specific objectives and effectively determine the best possible actions. The Q-value for the
corresponding state-action pair is updated in a Q-table. The Q-Learning algorithm refines these
Q-values through repeated interactions, based on the Bellman equation given as [26]:

Q (s [t] , a [t]) = Q (s [t] , a [t]) + α
[
r [t+ 1] + γmax

a
Q (s [t+ 1] , a)−Q (s [t] , a [t])

]
, (8)

where r [t+ 1] is the future feedback reward, α denotes the learning rate with (0 < α ≤ 1), and
γ is the learning discount factor (0 < γ ≤ 1).

Q-learning performs well when the state-action space is small enough to be represented fully
in a Q-table. However, in this network scenario, where data is transmitted through dynamic
space-air links to SDs, the system must simultaneously control the deployment locations of both
the HAP and multiple UAVs, link selection, transmit power allocation, and bandwidth allocation
ratio. As the number of UAVs and SDs increases, the state and action spaces grow exponentially,
making the problem even more challenging. Consequently, traditional Q-learning is not suitable
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for such scenarios. To overcome this limitation, the DQL algorithm enhances Q-learning by
employing a deep neural network to approximate the Q-values, replacing the traditional Q-value
table. This extension allows the algorithm to manage environments with large state-action spaces
and handle high-dimensional input, which is well-suited to the case study treated here.

In the environment setup, the agent determines the best action by choosing either a random
action or the action from the action space A with the highest Q-value based on current observa-
tions. This decision-making process uses the Epsilon ϵ-greedy model [26]. After performing the
selected action, the agent receives a reward r[t], and moves to the next state s [t+ 1]. To ensure
effective and stable training, the DQL incorporates replay memory, which allows the agent to
store past experiences e [t] = (s [t] , a [t] , r [t] , s [t+ 1]) in a memory buffer. Replay memory
improves the performance of the DQL algorithm by improving its ability to approximate the Q
value Q (s [t] , a [t] , ω) with the weight of the network ω. Once the replay memory reaches its
capacity, the agent randomly selects a batch of experiences for training. During training, the
agent relies on two networks: the policy network and the target network. The target network
is a duplicate of the policy network, sharing the same weights and biases. The target network,
defined as: Q′ (s′ [t] , a′ [t] , ω′), is used to compute the target Q-value, which is given as:

y [t] = r [t] + γmax
a′

Q′ (s′, a′, ω′) . (9)

The DQN architecture, proposed in [33] and illustrated in Fig. 2, is designed as a bias-free fully
connected architecture consisting of three layers: an input layer, L hidden layers, and an output
layer. In each time step t, the agent input observes the state s[t] of the SAGIN-IoT system and
uses this information to compute the Q-values for possible actions. The Q-network is trained in a
way to minimize the loss function. The loss function is typically defined using the Mean Squared
Error (MSE), which is given as:

L (ω) =
1

2
(y [t]−Q (s, a, ω))

2
. (10)

The weight ω of the policy network is updated iteratively using Stochastic Gradient Descent
(SGD) optimizer. During this process, transmitter devices send data over the wireless channel
through space to the ground. The action is selected according to argmaxa Q (s [t] , a [t] , ω), and
the system receives feedback in the form of reward and next-state information, which is used to
guide agent training in the SAGIN-IoT environment.

4.2. Proposed DQL algorithm
In the proposed algorithm, each transmitter device j is treated as an agent that interacts with

the environment in discrete time steps. At each time step t, each agent j observes the cur-
rent states sj [t], performs an action aj [t], receives a reward rj [t], and moves to the next state
sj [t+ 1]. Hence, the state sj [t], action aj [t], reward rj [t] for each agent j ∈ {k, h, 0} at time t
are defined as follows. The state space of agent j at time t is defined as:

sj [t] =
{
ûj [t] , b̂j [t] , p̂j,i [t] , Ĥ [t] , l̂j,i [t]

}
. (11)

Here, to ensure stability and efficient learning, all variables in the state sj [t] are normalized to the
range [0,1], which makes them suitable for input into the Q-Network. The coordinates of the lo-
cation of the agent are normalized as ûj [t] =

[
xj

xmax−xmin
,

yj

ymax−ymin

]
, where xmax, xmin, ymax,
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and ymin represent the values of the maximum and minimum position range of the agent j [27].
The set H [t] = [Hj,1, Hj,2, ...,Hj,i] represents the channel gains of the set between agent j and

SD i at various links. Hence, the channel gains are normalized as Ĥ [t] =
[

Hj,1[t]−Hj,1
min[t]

Hj,1
max[t]−Hj,1

min[t]
, ...,

Hj,i[t]−Hj,i
min[t]

Hj,i
max[t]−Hj,i

min[t]

]
. b̂j [t] is the current bandwidth allocation ratio for agent j. Link selection is

transformed into a unique vector using one-hot encoding, where each variable is mapped to a
vector with a single ’1’ and the rest ’0’s. For example, if agentj selects the second link for i, it is
represented as lj,2 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

The agent j in this network scenario makes decisions for moving to its optimal location,
adjusting the bandwidth allocation ratio, setting the transmit power for each SD, and selecting
the most efficient connection link for each SD, based on its current state sj [t]. The action space
is expressed as:

aj [t] = {uj [t] , bj [t] , pj,i [t] , lj,i [t]} , (12)

where the set of movement direction uj [t] ∈ {(xj , yj + L) , (xj , yj − L) , (xj − L, yj),
(xj + Lj , y) , (xj , yj)} represents upward, downward, leftward, rightward, and stationary

movements, respectively. Here, L = 1
A−12R, where A is the quantization level with the cell

radius R. The bandwidth allocation ratio for agent j, bj [t] ∈
{
0, 1

M , 2
M , ..., 1

}
corresponds

to the quantization levels (M + 1). The transmit power pj,i [t] ∈
{
0,

P j
max

N ,
2P j

max

N , ..., P j
max

}
is quantized in levels (N + 1). lj,i [t] ∈ {l1,1, l1,2, ..., lj,i}, where each element represents a
specific link selection choice.

The reward of the model is defined to maximize sum-rate for SD system given as:

rj [t] = Υtotal[t], (13)

when constraints C8, and C9 are satisfied; otherwise rj [t] = 0.
Algorithm 1 outlines the DQL process with experience replay for training the agent, where

the complete pseudocode process is provided in the supplementary file in [33].

5. Proposed AO Algorithm Using Differential Annealing (DA)
The optimization problem in the case study involves controlling multiple parameters. How-

ever, solving this problem directly as an optimization model formulation is computationally in-
feasible due to the high dimensional search space and strong interdependencies among variables.
To address this challenge, an AO algorithm is adopted, which decomposes the optimization pro-
cess into two subproblems, each focusing on a specific set of control parameters. This decom-
position simplifies the complex optimization model while maintaining the relationships between
resource allocation and network topology. The optimization variables are categorized into two
groups. The first subproblem (P1) involves optimizing the bandwidth allocation ratio and trans-
mit power (bj , pj,i), which is defined as:

(P1) max
pj,i,bj

Υtotal[t] (14)

subject to the constraints C1, C2, C3, C10, and C11. This subproblem focuses on optimizing
continuous variables that directly impact spectral efficiency while keeping UAV/HAP locations
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and link selection fixed. Since optimal transmit power allocation depends on available band-
width, their joint optimization is essential for maximizing spectral efficiency. Both parameters
determine the achievable sum-rate based on the Shannon capacity formula, as presented in equa-
tions (3) and (4). The second subproblem (P2) involves optimizing the location of the transmitter
devices uj , ∀j ∈ {h, k} and link selection lj,i while keeping other variables fixed, which is given
as:

(P2) max
uj ,lj,i

Υtotal[t] (15)

subject to constraints C4–C8 and C12–C13. These variables, which depend on the network
topology, shape network connectivity and should be jointly optimized under fixed transmit power
allocation and bandwidth allocation ratio. UAV/HAP positioning directly affects channel quality,
while binary link selection decisions determine which transmitter serves each SD device. Their
joint optimization ensures efficient traffic distribution, preventing congestion at specific network
nodes. By solving these highly coupled subproblems in an alternating manner, the AO framework
effectively explores the solution space. The AO-based algorithm is detailed in Algorithm 2,
where the pseudocode is provided in [33].

6. Performance Evaluation

6.1. Simulation results
In this simulation, a single LEO satellite is deployed within a cell radius of 2000× 2000m2,

positioned at an altitude of 340 km. The feasible positions for the HAP and UAVs are considered
at altitudes of 25 km [23] and 300 m [28], respectively. To ensure the safety and efficiency of
aerial entities, the closest allowed proximity between UAVs dk,k′ is set to 20 m [29]. Each SD i is
required to maintain a minimum data rate rj,min = 1Mbps [30]. For communication purposes,
Gaussian noise with a power spectral density of σ2 = −174 dBm is assumed. Additional system
parameters are summarized in Table 1 provided in [33].

As shown in Fig. 2, which is given in [33], the proposed DQL framework consists of three
components: input, hidden, and output layers. It employs two Deep Q-Networks: one for the
policy network and one for the target network, each comprising four fully connected layers with
256 ReLU activation units per layer. The model is trained using the SGD optimizer with a
learning rate of α = 0.001, a discount factor of γ = 0.99, along with an ϵ-greedy exploration
strategy where ϵ = 0.1. The replay memory size is set to D = 5000, and a mini-batch size of
128 is used for each update [27]. The convergence behavior of the proposed DQL algorithm is
evaluated based on the system sum-rate (in Mbps), which serves as the reward function.

As shown in Fig. 3 of [33], the training is performed over Tep = 1000 episodes, each con-
sisting of up to 200 steps. Due to the exploration strategy and the stochastic nature of DQL, the
reward initially fluctuates. However, convergence is achieved after approximately 500 episodes
(50% of the training), with the reward stabilizing around 220 Mbps. These early fluctuations
are expected in DQL and reflect the trade-off between exploration and exploitation. The reward
function, defined in Eq. (13), is designed to guide the agent toward maximizing the overall
downlink sum-rate. For performance evaluation, the average downlink sum-rate is measured
over 1000 independent test episodes after the training phase to ensure the reliability and stability
of the learned policy. Fig. 4 in [33] illustrates the convergence behavior of the AO algorithm
over 1000 iterations, demonstrating its balance between exploration and exploitation. In the
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early iterations, variability in the sum-rate is observed due to the stochastic nature of the DA
algorithm, which combines global exploration with local refinement. This randomness enables
the algorithm to escape local optima by accepting worse solutions, a behavior controlled by a
temperature-dependent acceptance probability. Between iterations 200 and 600, the sum-rate in-
creases from approximately 50 to 150 Mbps. During this stage, frequent fluctuations suggest that
the algorithm is still actively exploring the solution space. This phase marks a transition period
in which the algorithm gradually shifts from broad exploration to more focused exploitation.
As the temperature decreases, the algorithm becomes more selective, reducing the acceptance
of suboptimal solutions while still allowing stochastic jumps to avoid fast convergence. From
iterations 600 to 1000, the curve stabilizes within the range of 160–175 Mbps, indicating a phase
of refined local search and convergence. This stage reflects the algorithm’s ability to fine-tune
solutions within a favorable region, handling the complexities of the optimization landscape ef-
fectively. Overall, the convergence pattern showcases the DA algorithm’s strengths, its capacity
for global exploration and local refinement, consistent convergence with significant improvement
over the initial values, and a well-balanced exploration–exploitation trade-off. The final sum-rate
of approximately 175 Mbps confirms the algorithm’s effectiveness for SAGIN-IoT optimization
problems.

To evaluate the effectiveness of the proposed DQL and AO algorithms, their performance is
compared with the benchmark algorithm, GS. Although DQL is learning-based while AO and
GS are optimization-based, all algorithms are evaluated under the same system model, input
data, performance metrics, and network conditions. The hyperparameters for training the DQL
agent are chosen based on experimental validation and fine-tuned to ensure stable convergence.
Meanwhile, the AO algorithm iteratively updates solutions using key parameters, including the
acceptance parameter and temperature schedule, which are set through practical tuning and litera-
ture guidance to balance convergence speed and the ability to maximize the system sum-rate. The
GS algorithm employs a tolerance threshold, ϵ−2, as a convergence criterion to efficiently termi-
nate the exhaustive search while maintaining solution accuracy. This parameter tuning across all
algorithms ensures a balanced and fair performance comparison. The average performance of all
algorithms is measured over 1000 independent test episodes to ensure reliability. Fig. 4, given
in [33], presents the impact of increasing the maximum UAV transmit power PUAV

max on the sum-
rate performance of the three algorithms: the proposed DQL and AO, and the benchmark GS. As
PUAV
max increases, all algorithms achieve higher sum-rates due to improved signal strength at the

receivers. However, the proposed DQL consistently achieves the highest performance, demon-
strating its superior learning capability and adaptability compared to the other algorithms. AO,
also proposed in this work, performs better than the benchmark GS but remains below DQL,
demonstrating a moderate improvement through optimization technique.

To further assess scalability, Fig. 5 in [33] compares the sum-rate performance as the number
of SDs increases. The proposed DQL algorithm starts at approximately 70Mbps for 5 SDs
and scales up to around 1200Mbps for 45 SDs, significantly outperforming AO and GS. This
trend highlights DQL’s strong scalability and efficiency in managing increasing network load.
Similarly, AO consistently outperforms GS across all network sizes but does not achieve the
performance level of DQL. In contrast, GS shows relatively slower growth, indicating limited
scalability. Overall, the results confirm that while both proposed algorithms improve network
performance compared to GS, DQL delivers the highest overall performance and adapts most
effectively to growing network sizes, making it the most robust and scalable algorithm among
those evaluated.
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Fig. 6 (a) in [33] illustrates the impact of a low minimum rate constraint on network perfor-
mance. When the minimum rate is set to Υj,min = 1 Mbps, most SDs tend to connect directly to
the LEO satellite despite its high path loss. This is because the low threshold allows SDs to easily
meet the rate requirement. However, this leads to congestion at the LEO satellite’s transmitter,
ultimately reducing the achievable data rates. In contrast, Fig. 6 (b) in [33] shows the average
data rates for SD groups when the minimum rate is increased to Υj,min = 10 Mbps. Under
this stricter constraint, SDs are more evenly distributed across the LEO satellite, HAP, UAV1,
and UAV2 to meet the requirement. The results demonstrate that all SDs satisfy the constraint,
regardless of which node they connect to. Among the algorithms, the proposed DQL algorithm
achieves the highest average SD data rate of approximately 15 Mbps, followed by AO with about
13 Mbps, and GS with around 10 Mbps. These findings further highlight the superior adaptability
and performance of the proposed DQL algorithm under varying network constraints.

Fig. 7 (a) in [33] illustrates the initial stage of the dynamic link selection process, where SDs
connect randomly to available nodes. During training, the proposed DQL agent explores various
link options and evaluates their performance based on the received signal strength from nearby
transmitters j. This exploration enables SDs achieve the highest possible data rate. The training
continues until the DQL agent converges to a stable policy that maximizes the expected sum-
rate of the network. As shown in Fig. 7 (b) in [33], the learned policy demonstrates intelligent
link selection across the network. SDs located in edge areas primarily connect to LEO satellites,
benefiting from their wide coverage despite higher path loss. Meanwhile, UAVs are deployed
in densely populated area, where favorable line-of-sight conditions and proximity to SDs enable
stronger signal quality. Due to their limited coverage and capacity, HAPs complement UAVs by
serving area beyond UAV reach, thereby enhancing overall network coverage and capacity. These
results clearly demonstrate the DQL algorithm’s ability to dynamically optimize link selection,
leading to a more efficient and high-performing SD network.

To validate the efficiency and accuracy of the proposed algorithms, they are evaluated using
simulation-based performance metrics, including downlink sum-rate, convergence behavior, and
scalability. A comparative analysis is conducted with a benchmark algorithm, GS, under the
same conditions to ensure fairness. The evaluation includes the convergence curve shown in
Fig. 3 of [33], sum-rate compared to transmit power in Fig. 4 of [33], scalability with an
increasing number of SDs in Fig. 5 of [33], and the computational complexity and execution time
summarized in Table 2, which is provided in [33]. Together, these results validate the accuracy,
learning effectiveness, and scalability of the proposed algorithm in an SAGIN-IoT environment.

6.2. Computational analysis

In this section, the computational efficiency of three algorithms, AO, GS, and DQL, is ana-
lyzed. The detailed complexity analysis is provided in the Supplementary Material [33].

7. Conclusions

This paper addressed the problem of maximizing the sum-rate in the NOMA-based SAGIN-
IoT system. To achieve this, an optimization problem is formulated by jointly controlling the
deployment locations of HAP and UAV, bandwidth allocation ratio, link selection, and transmit
power. To solve this problem, the DQL and DA with AO framework are proposed. The DQL



338 S. Meng et al.

algorithm enables efficient decision-making in a highly dynamic and high-dimensional environ-
ment, while the AO algorithm divides the original problem into two subproblems and solves these
subproblems using DA. The computational complexity of three algorithms is analyzed and com-
pare the simulation results of the proposed DQL and AO algorithms with GS algorithm. Results
show that the proposed DQL algorithm achieves superior performance both AO and GS in terms
of overall sum-rate optimization with lower computational complexity. While the AO algorithm
provides competitive performance but with higher computational complexity compared to DQL
and GS.

Future research will be focused on further improving energy efficiency, in order to achieve
superior network performance while conserving power consumption. This strategic direction re-
flects authors’ commitment to advancing IoT technology, ensuring sustainable and high-performance
solutions for future applications.
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